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Abstract
This study combined hierarchical cluster analysis and classification and regression tree algorithms to quantify vegetation and fuel

characteristics and to generate spatially explicit vegetation and fuels maps for forest and fire management in the Davis Mountains of west

Texas, USA. We used field data, landscape metrics derived from digital elevation models, and spectral information from remotely sensed imagery

to (1) determine recent changes in forest stand structure in relation to historical fire exclusion, (2) quantify the effects of fire exclusion on fuel

accumulation patterns, and (3) develop predictive vegetation and fuels maps for our study area. Four vegetation types were identified by cluster

analysis including: mesic woodlands, pinyon pine forests, alligator juniper forests, and gray oak forests. Vegetation types varied by elevation,

landform type, potential relative radiation (PRR), and spectral signature. Age data suggested that the majority of pines in the Davis Mountains

established near 1920, just after the widespread 1916 fire and favorable climatic conditions in 1919. Three fuel types were identified that also varied

by elevation, landform type, PRR and spectral characteristics, although the importance of these variables in distinguishing fuel types differed from

the environmental variables that discerned the vegetation types. Forest stand densities and fuel accumulations were high in the Davis Mountains,

which was probably the result of fire exclusion from grazing activities beginning in the early 1900s. Results from this study will be used to

implement forest and fire management activities directed toward ecosystem restoration and maintenance.
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1. Introduction

Natural resource managers throughout the western United

States need decision support tools to guide forest and fire

management programs that focus on maintaining biodiversity

and ecosystem function. Frequent, low intensity fire was a

keystone ecosystem process in forests of the southwestern

United States prior to fire exclusion from grazing beginning in

the late 1800s and direct fire suppression that began in the early

1900s (Leopold, 1924; Faulk, 1970; Swetnam and Baisan,

1996). The removal of fire from the forested landscapes of the

Southwest has stimulated a shift from historically open, park-

like forests with little understory fuels to dense, stagnated

forests with high live and dead fuel loads (Cooper, 1960;
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Biswell et al., 1973; Sackett, 1979; Harrington, 1982). Changes

in the horizontal and vertical continuity of fuels have resulted in

forest stand structures that are susceptible to intense crown fires

that differ dramatically from the range of historical fire regime

variability (USDA and USDI, 2000). The dramatic changes in

recent fire behavior as a result of increases in the recruitment of

vegetation and the accumulation of fuels in the absence of fire

have triggered both public and private interest in reducing fuel

loads and restoring forest stand structures to their range of

historical natural variability through forest thinning and

prescribed fire.

Managers need of a variety of tools to direct management

prescriptions focused on reducing the risk of high intensity fire

in regions that historically experienced frequent, low intensity

fire. Baseline information about contemporary tree species

composition, forest stand structure, and fuel accumulation

patterns is an important first step in quantifying the changes that

have occurred under fire suppression. However, this detailed
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Fig. 1. Location of the Davis Mountains Preserve of The Nature Conservancy

(DMTNC).
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information is time consuming and costly to collect, and is

therefore limited to a restricted number of sites in the Southwest

(i.e. Fulé et al., 1997; Fulé et al., 2002; Moore et al., 2004;

Heinlein et al., 2005).

A second step for informed forest and fuels management is

the extrapolation of species-environment and fuels-environ-

ment relationships across landscapes through predictive

mapping. Biophysical gradient modeling is a useful method

for predicting plant species composition (Whittaker and

Niering, 1965, 1968), forest stand structure (Ohmann and

Spies, 1998), and fuel loads (Kessell, 1976; Keane et al., 1997,

2000; Falkowski et al., 2005) across landscapes of the western

United States. However, the key environmental factors that

control the abundance and distribution of vegetation and fuels

vary between regions and across mountain ranges, signaling the

need for site specific and spatially explicit information about

landscape-scale variability in environmental site conditions and

vegetation and fuel distribution patterns.

The combined use of detailed field-based vegetation and

fuels data, environmental data, and satellite imagery is a

promising method for accurate predictive mapping of vegeta-

tion and fuels (Keane et al., 2000, 2001; Ohmann and Gregory,

2002). Remotely sensed imagery offers an inexpensive and

readily available form of ancillary data that has been used

extensively for mapping vegetation and fuels. Alone, remotely

sensed data of forest-covered areas are limited to the general

characteristics of the upper forest canopy, which can lead to

erroneous vegetation and fuel maps. However, forest inventory

data, environmental data, and spectral information from

remotely sensed satellite images can be used in suite to

enhance the accuracy of vegetation and fuel maps.

This study used a hierarchical approach to characterize and

model woody vegetation, forest stand structure, and fuel loads

in the Davis Mountains Preserve of The Nature Conservancy

(DMTNC) in the Davis Mountains of west Texas, USA. We

used field-based data, biophysical gradient modeling, and

remotely sensed imagery to characterize and scale tree species

composition, forest stand structure, and fuel loads from the plot

to the landscape scale. The goals of this study were to: (1)

quantify forest distribution patterns and stand structure in

relation to historical fire exclusion, (2) determine the effects of

fire exclusion on fuel accumulation patterns, and (3) generate

spatially explicit fuels and vegetation maps for use by forest

and fire managers to identify high fire risk locations on the

landscape for fuel reduction treatments via forest thinning and

prescribed fire.

Vegetation and fuels mapping have been carried out

successfully in selected regions of the western United States

using a variety of techniques including: maximum likelihood

classifiers (Miller et al., 2003), logistic regression (Brown,

1994), linear discriminant analysis (Lewis, 1998; Keane et al.,

2000), kriging (Ohmann and Spies, 1998), most similar

neighbor imputation (Moeur et al., 1999), gradient nearest

neighbor imputation (Ohmann and Gregory, 2002; Ohmann

et al., in press), artificial neural networks (Gopal and

Woodcock, 1996), and classification and regression trees

(Franklin, 1998, 2002; Falkowski et al., 2005). In recent years,
classification and regression trees have proven to be robust

techniques for mapping vegetation and fuels due to their non-

parametric nature, ability to handle continuous and discrete

data types, and capability to deal with missing data (Brown de

Colstoun et al., 2003). In general, decision trees perform as well

as or better than other classification methods, and the explicit

structure of their output makes it easy to interpret the main

factors that distinguish classes from one another. In light of the

robust nature and flexibility of decision trees in handling a

variety of data types, we employed a classification tree

approach to scale our plot-level vegetation and fuels data across

the landscape of DMTNC.

2. Study area

The Nature Conservancy Preserve of the Davis Mountains is

located in Jeff Davis County in western Texas (Fig. 1). The

Davis Mountains comprise the largest mountain range in Texas,

spanning from 1524 to 2560 m in elevation. They form part of

the northernmost extension of the Sierra Madre Oriental, which

continues over 1500 km southward to the states of Puebla and

Querétaro in Mexico. The Davis Mountains are 35–39 million

years old, and originated in the same Eocene to Oligocene

orogeny that formed most of the Front Range of the Rocky

Mountains (Turner, 1977). Geologic substrates in DMTNC are

derived from the erosional remnant of the once widespread

Davis Mountains volcanic field. Consequently, the underlying

rocks are predominantly extrusives, consisting of lavas and

pyroclastics. Soils are generally shallow to moderately deep,

and are volcanic in origin.

Vegetation of the Davis Mountains is composed of pinyon

pine, juniper, oak and mixed conifer tree species. Dominant

species include Juniperus deppeana, Quercus grisea, Q.

gravesii, Q. emoryi, Q. hypoleucoides, Pinus cembroides, P.

strobiformis and P. Ponderosa. Chihuahuan desert grasslands

bound the site at lower elevations, while relict montane conifer

forests form the upper elevational boundary (Hinckley, 1944).

The climate is arid, characterized by cool winters and warm

summers. Mean annual precipitation is 400 mm in Ft. Davis,
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Texas, and is distributed bi-modally in late summer and winter

with the majority of precipitation falling during summer

monsoons (Bowmar, 1995). Mean monthly minimum tem-

peratures range from 0.0 8C in January to 17.7 8C in July, while

mean monthly maximum temperatures range from 15.5 8C in

January to 32.6 8C in July.

3. Methods

3.1. Vegetation sampling

Two hundred and twenty-nine plots were established using a

systematic sampling design. A grid was used to stratify sample

plots at 600-m intervals across DMTNC at the intersection of

grid lines to ensure that the plots captured the variability in local

site conditions and tree species in the Davis Mountains. The

spatial location of the center point of each plot was recorded

using a global positioning system. Vegetation within each plot

was sampled using nested, circular, fixed area plots All trees

�5 cm diameter at breast height (dbh) were measured in 10 m

in radius plots, and we recorded the species, dbh, total height,

height at the base of the live crown, and the live crown ratio for

each tree. Seedlings were tallied by species using 5 m radius

plots. Plot areas were corrected for slope upon return from the

field.

Forest stand structure was quantified using size, age, height,

live crown height, and live crown ratio measurements. The

density (ha�1) of trees was calculated in 5 cm size-classes for

each species in each plot as a measure of tree size structure.

Stand age was determined by coring a subset of trees in each

plot using an increment borer (n = 430). P. cembroides, P.

strobiformis, and P. ponderosa were the only species sampled

for the determination of stand age, because the majority of tree

species in DMTNC do not produce annual growth rings making

accurate age estimates difficult. Three seedlings (<5 cm dbh)

were destructively sampled just outside the perimeter of each

plot, and cross-sections were taken of each seedling at the base

and at 30 cm high to determine the age of seedlings and to

correct for the number of years lost at a coring height of 30 cm.

Tree cores and seedling cross-sections were aged by sanding

them to a high polish and visually cross-dating them under a

binocular microscope using standard dendrochronological

techniques (Stokes and Smiley, 1968). Additional years to

the center were estimated with a pith locator (concentric circles

matched to the curvature and density for the inner rings) for

cores that missed the pith (Appelquist, 1958).

3.2. Fuels sampling

The fuels component of our study focused on the live

canopy, standing dead, and dead and downed fuels in DMTNC.

While we realize that fine fuel loads are major determinants of

fire spread, we sampled only larger fuels to estimate locations

on the landscape that were preconditioned to burn in high

intensity fire events, or during extremely dry years (sensu

Harrington, 1982). Our intent in sampling larger fuel particles

was to generate information about the dominant topographic
factors influencing the distribution of larger fuels at the

landscape-scale.

The fuel loading of the forest canopy was quantified by

taking a hemispherical photograph at the center point of each

vegetation plot. Hemispherical photographs were taken with a

Nikon Coolpix 900 digital camera with Coolpix 900 fish-eye

lens mounted on a self-leveling tripod positioned 1 m above the

ground. Pictures were taken under cloudy sky conditions in the

morning. The leaf area index (LAI) of each plot was calculated

using HemiView canopy analysis software version 2.1 (Delta-T

Devices, 1999). LAI data were converted to crown bulk density

(CBD) using the following equation derived by Keane et al.

(2005):

ŷ ¼ 0:0396þ 0:0511 LAIHemiphoto (1)

where ŷ is the crown bulk density (kg m�3) and LAIHemiphoto is

the LAI of the hemispherical photograph. The development of

the CBD equation above was specifically designed for use with

hemispherical photos. It was field tested in a wide range of

forest types in the United States and should be applicable to the

forests of DMTNC (Keane, personal communication).

Live fuel structure was determined by calculating the total

basal area (BA) (ha�1), and density (ha�1) of trees in 5 cm size-

classes in each sample plot. Standing dead tree structure was

summarized by the total standing dead BA (ha�1) and density

(ha�1) in 5 cm size-classes. The percent cover of grass and litter

was estimated in six classes (<1%, 2–5%, 6–25%, 26–50%,

51–75%, and 76–100%).

Large dead and down fuels were sampled using the point

relascope method for quantifying coarse woody debris (CWD)

developed by Gove et al. (2001). Point relascope sampling (PRS)

is a plotless sampling technique that is operationally efficient in

the field, and compares closely to more traditional methods

including fixed area and line intercept sampling for larger fuel

particles (i.e. Brown, 1974; Brown et al., 1982) according to field

tests by Brisette et al. (2003) and Jordan et al. (2004). As a

plotless method that was superimposed on the circular vegetation

plots, PRS was operationally more efficient in the field than

traditional methods, especially in the extremely broken

topography of DMTNC. PRS was carried out at the center

point of each vegetation plot using a 288 angle of inclusion. The

frequency (ha�1), biomass (kg ha�1), and volume (m3 ha�1) of

larger fuels were calculated for 2.6–7.5 cm (100-h fuels) and

>7.6 cm (1000-h fuels) time-lag fuel moisture categories only

(Brown, 1974). Smaller fuel particles (<2.6 cm) were not

sampled in this study. The time-lag is defined as the time period

required for a fuel particle to reach �63% of the difference

between the initial moisture content and the equilibrium moisture

content in a different environment (temperature, humidity). The

63% comes from the solution of a step response function and is

given by 1 � 1/e = 0.63 (Byram, 1963). This characteristic of the

fuel particle is strongly correlated to its diameter, where the time-

lag period was estimated by measuring the particles’ diameter

(Fosberg and Deeming, 1971). Species-specific values for the

specific gravity of downed fuels were taken from Brown et al.

(1982) for conifers and Maingi and Ffolliot (1992) for oaks.



Table 1

Explanatory variables used for decision tree construction and mapping of

vegetation types and fuel characteristics in DMTNC

Variable code Definition

Landscape metrics

Elevation Elevation (m), from 30-m digital elevation

model (DEM)

N aspect Cosine transformation of aspect (8) (Beers et

al., 1966) 1.0 (southwest) to �1.0 northeast

S aspect Sine transformation of aspect (8) (Beers et al.,

1966) 1.0 (southwest) to �1.0 northeast

Slope Slope (8), from 30-m DEM

PRR Cumulative potential relative radiation based

on hourly solar position, topography and

topographic shading (Pierce et al., 2005)

Topopos 150 Topographic position, calculated as the

difference between a cell’s elevation and the

mean elevation of cells within a 150 m radius

Topopos 450 Topographic position, calculated as the difference

between a cell’s elevation and the mean elevation

of cells within a 450 m radius

Topo configuration Topographic configuration ranging from concave

to convex calculated using the spatial analyst

function in ArcMap 9.1

Landform Landform type derived from a fuzzy-kmeans

classification of elevation, relative elevation,

plane curvature, stream power index profile

curvature, slope gradient, compound topographic

index, and flow accumulation derived from

30-m DEM using FuzME software (Minasny

and McBratney, 1999)

Flow direction Flow direction from ArcHydro extension in

ArcMap 9.1 and 30-m DEM

Landsat ETM+

Band 1 Band 1 (blue)

Band 2 Band 2 (green)

Band 3 Band 3 (red)

Band 4 Band 4 (near-infrared)

Band 5 Band 5 (mid-infrared)

Band 7 Band 7 (mid-infrared)

Brightness Soil brightness index from tasseled cap

transformation

Greeness Green vegetation index from tasseled cap

transformation

Wetness Wetness index from tasseled cap transformation

SAVI Soil adjusted vegetation index (Gilabert et al., 2002)
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3.3. Classification

Hierarchical cluster analysis using relative Euclidean

distances and Ward’s method was used to identify vegetation

and fuel types in DMTNC based upon the good performance of

the relative Euclidean distance metric and Ward’s linkage

method on ecological datasets (McCune and Grace, 2002). We

identified the major vegetation types in DMTNC by clustering

species importance values for each vegetation sample plot.

Species importance values were calculated as percentages

using the sum of the relative density and the relative BA of each

species (0–200 range). Fuel types were determined by

clustering the CBD, total live and standing dead BA, live

and dead tree density, and the density, volume, and biomass of

10, 100, and 1000 h dead and downed fuels. Variable values

were standardized to z-scores before clustering to account for

differences in means and variances.

Indicator species analysis (Dufrêne and Legendre, 1997)

with Euclidean distances as the distance metric was used to

determine the significant indicator species in each vegetation

type. Indicator species analysis combines information on the

concentration of species abundance in a particular group and

the faithfulness of occurrence of a species in a particular group,

where a perfect indicator always appears in that group

(McCune and Grace, 2002). The significance of indicator

values is tested using a Monte Carlo randomization approach.

Cluster analysis and indicator species analysis were preformed

using PC-Ord software (McCune and Mefford, 1999).

Significant differences in fuel characteristics and environ-

mental variables among vegetation and fuel types were

identified using Kruskal–Wallis (Kruskal and Wallis, 1952)

tests using Minitab, Version 12.2 statistical software

(Minitab, 1999). A non-parametric test was chosen for this

analysis in light of the non-normal distribution of the

environmental data.

3.4. Landscape metrics

A set of 12 raster-based topographic, landform, and solar

radiation variables were derived using the National Elevation

Dataset (NED) for the study area at a 30 m � 30 m spatial

resolution (USGS, 2005) (Table 1). We filtered each of these

grids using a 3 by 3 pixel window assigning the mean value to

the center pixel to reduce fine scale noise in the dataset. Raster

values for the landscape metrics were assigned to each plot by

intersecting the spatial location of the sample plot with each

landscape data layer using ArcMap 9.2 software (ESRI,

2005).

3.5. Landsat 7 ETM+

A cloudless Landsat enhanced Thematic Mapper (ETM+)

image from 18 June 2002 was used to develop six independent

data layers from bands 1–5 and 7. A June scene from 2002 was

chosen because it coincided with the timing of field sampling of

vegetation and fuels, and because the scene was taken just prior

to the onset of the summer monsoon. All tree species in the
study area are evergreen, and therefore a summer scene was

chosen to reduce the noise in the spectral signature from winter

perennial grasses and herbaceous vegetation. We transformed

the image into tasseled cap brightness, greenness, and wetness

indices (Kauth and Thomas, 1976), and computed a soil

adjusted vegetation index (SAVI) (Gilabert et al., 2002). SAVI

was chosen over the more widespread normalized difference

vegetation index (NDVI) in light of its poor performance in arid

regions (Huete, 1988). The raster grids were filtered in the same

manner as the landscape grids, and ETM+ derived values were

also assigned to vegetation and fuel plots by intersecting the

spatial location of the plots with each of the satellite data layers

in succession. Significant differences in landscape and spectral

data among vegetation and fuel types were determined using

Kruskal–Wallis tests.
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3.6. Predictive mapping

The two most common methods for mapping fuels are direct

and indirect remote sensing (sensu Keane et al., 2001). Direct

remote sensing is the mapping of fuels directly from remotely

sensed satellite imagery. This method is simple and straight

forward, but is often associated with significant error. Dead and

down fuels are often not captured by the majority of remote

sensors because they fail to penetrate the forest canopy

(Belward et al., 1994). Thus, the classification of fuels using

remotely sensed imagery alone is actually based on the spectral

signature of the vegetation, rather than the spectral signature of

the fuels in question. The second approach, indirect remote

sensing, maps vegetation first using satellite imagery, and then

assigns fuel types to the different vegetation types. This method

assumes that vegetation characteristics correlate well with fuel

characteristics, and that vegetation properties can be used to

describe differences in fuel types. The major disadvantage of

this approach is that stand history, biophysical setting, and

forest stand structure can have major influences on the

distribution of fuels. A particular vegetation type may display

a wide range of fuel loads depending on its spatial location,

stand age, and disturbance history. In light of the potential

errors associated with direct and indirect fuels mapping, we

mapped vegetation and fuels separately to minimize the errors

associated with using vegetation properties as a surrogate for

direct fuels mapping.

We used classification trees (Breiman et al., 1984) to

generate spatially explicit maps of vegetation and fuels in

DMTNC by using landscape metric and spectral data to scale

the vegetation and fuels types we identified by cluster analysis

from the plot- to the landscape-scale. Classification and

regression trees (CART) belong to a family of algorithmic

methods that generate decision trees from a set of learning

cases. Recursive partitioning searches through the landscape

metric and spectral data to find the greatest separation between

pre-defined vegetation types and fuel types (determined from

cluster analysis). Classification trees are ideal for mapping

ecological datasets because they are non-parametric, can

handle categorical variables, and are robust to outliers (De’ath

and Fabricius, 2000). Furthermore, their output is easy to

interpret and the decision rules created through classification

trees can be linked to environmental processes across land-

scapes.

Vegetation and fuel decision trees were constructed using

the rpart package in the statistical language R (R Development

Core Team, 2005). The rpart package implements a recursive-

partitioning algorithm that parallels the classification tree

methodology of Breiman et al. (1984). The final vegetation and

fuel maps were produced using Decision Tree in ENVI remote

sensing software, version 4.2 (Research Systems Inc., 2005).

3.7. Model fitting

The fits of the vegetation and fuel models were evaluated by

examining the cost-complexity parameters which measure how

well the explanatory landscape metric and Landsat ETM+
derived variables separate the data. Traditionally, a tree is

grown that overfits the model so that all the training data are

correctly classified. A 10-fold cross-validation procedure

corrects this overfitting by evaluating each node of the initial

decision tree in terms of the classification error rate on the

training set using a cost-complexity function (Breiman et al.,

1984). The best model size is determined by selecting the tree

that is within one standard deviation of the minimum

misclassification error. Finally, the test dataset is used to

determine overall model performance.

3.8. Classification accuracy

The percentage of misclassification and the Kappa statistic

(Congalton and Green, 1999) were used as measures of

classification accuracy for the two different models. The Kappa

statistic, which ranges between 0 and 1, is a measure of the

difference between the actual correct classification of the data

and the correct classification of the data by chance alone. A

Kappa of 0.60 therefore means that the classification accuracy

was 60% greater than chance.

We tested the accuracy of the classification tree models by

generating vegetation and fuel models using an 80% subset of

randomly selected data to construct the models, and reserving

20% of the data for model validation. This process was repeated

1000 times using random subsets of the data without

replacement as an estimate of overall model performance.

Field validation of the two models was carried out to assess

map accuracies (n = 100). Validation points were stratified in

the field by vegetation type and fuel type. The accuracy of the

vegetation map was assessed through visual estimates of %

cover of dominant tree species in six cover classes (<1, 1–4%,

5–24%, 25–49%, 50–74%, and 75–100% cover). The accuracy

of the fuel map was assessed using point relascope sampling

(Gove et al., 2001).

4. Results

4.1. Vegetation types and forest stand structure

Four vegetation types were identified using cluster analysis

and mapped via recursive partitioning: (1) pinyon pine (P.

cembroides) forests (PP), (2) gray oak (Q. grisea) forests (GO),

(3) alligator juniper (J. deppeana) forests (AJ), and (4) mesic

woodlands (MW) (Fig. 2). Indicator species varied by

vegetation type (Tables 2 and 3), and the spatial distribution

of vegetation differed significantly by topography (landscape

metrics) and spectral signature (Landsat ETM+ data) (Table 4,

Fig. 3).

All vegetation types had high densities of young, small

diameter trees (Table 5, Fig. 4). All conifer species had reverse-

J size class distributions suggesting an all age structure, while

gray oak showed a peak at intermediate size classes (10–15 cm

dbh). Forest age distributions were uneven-aged, and were

dominated by relatively young trees that established near 1920

(Fig. 5), just after the last widespread fire in DMTNC (Poulos,

unpublished data).



Fig. 2. Vegetation map for the Davis Mountains Preserve (DMTNC) developed

using recursive partitioning. Vegetation types (gray oak, alligator juniper,

pinyon pine, and mesic woodland) were determined using cluster analysis of

species importance values.

Table 2

Mean importance values (IV), density (ha�1), basal area (BA) (ha�1), stand age (yea

(m), and live crown height for vegetation types in the Davis Mountains (DMTNC

Vegetation type Oak–pinyon–juniper

(n = 49)

Pinyon pine (n = 73) G

IV BA Density IV BA Density I

Arbutus xalapensis 0.0 0.0 0.0 0.1 0.0 1.8

Juniperus deppeana 55.8 6.2 379.6 21.4 2.0 148.2

Pinus cembroides 45.9 3.6 458.1 109.2 5.7 643.6

Pinus ponderosa 1.6 0.0 13.3 0.6 0.0 2.2

Pinus strobiformis 0.0 0.0 0.0 0.0 0.0 0.0

Quercus emoryi 0.6 0.0 32.9 4.4 0.0 71.2

Quercus gambellii 0.3 0.0 2.3 0.0 0.0 14.3

Quercus gracilliformis 0.0 0.0 0.0 0.0 0.0 0.0

Quercus gravesii 0.6 0.0 2.6 0.1 0.0 2.8

Quercus grisea 52.2 7.3 458.9 30.9 3.8 282.3

Quercus hypoleucoides 42.7 1.0 24.1 3.1 0.0 7.5

Quercus shumardii 0.0 0.0 0.0 1.0 0.0 2.8

Quercus oblongifolia 0.0 0.0 0.0 0.4 0.0 0.0

Total 200.0 18.1 1371.9 200.0 11.4 1176.6 2

Stand age (years) 80.4 93.3

# Strata 3 3

# Age cohorts 2 1

Stand height (m) 4.4 4.4

Live crown height (m) 1.2 1.2

Live crown ratio 0.3 0.3

Vegetation types were determined from cluster analysis using relative Euclidean dis

pruned and vegetation types determined using indicator species analysis (Table 3)
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4.2. Pinyon pine forests

P. cembroides was the most important indicator species in

this vegetation type (Tables 2 and 3). The PP vegetation type

existed at middle and upper elevations (1750–2400 m) on

convex, upper topographic positions with steep slopes, with

high runoff (sediment flow) (Table 4, Fig. 3). Band 7 (mid-

infrared), slope, and potential relative radiation (PRR) were the

most important predictors of the PP forest type from recursive

partitioning (Fig. 3). PP forests were the oldest stands in

DMTNC (mean = 93.3 years), and had the lowest basal area

(11.4 m2 ha�1). This forest type had high densities of small P.

cembroides, mixed with scattered, small J. deppeana, Q. grisea,

and Q. emoryi (Table 2, Fig. 4).

4.3. Gray oak forests

Q. grisea was the most important indicator species in the GO

forest type, with Q. hypoleucoides, P. cembroides and J.

deppeana also present as minor associated tree species

(Tables 2 and 3). The GO vegetation type was found at middle

and upper elevations (1900–2400 m) on convex, upper

topographic positions with steep slopes and high PRR

(Table 4). Recursive partitioning separated this group by slope

and PRR (Fig. 3). The GO vegetation type displayed

characteristics typical of an oak savanna woodland, and was

the most sparsely vegetated forest cover type in DMTNC. GO

forests had low densities of scattered, short-stature Q. grisea, Q.

hypoleucoides, P. cembroides, and J. deppeana. Intermediate

sized (10–15 cm dbh) Q. grisea composed the forest overstory,
rs), # forest strata, crown height (m), live crown ratio # age cohorts, stand height

)

ray oak (n = 26) Alligator juniper

(n = 66)

Mesic woodland

(n = 15)

V BA Density IV BA Density IV BA Density

0.0 0.0 7.7 0.1 0.0 0.0 2.9 0.0 79.0

8.5 0.0 103.4 129.8 9.1 703.2 21.9 2.6 175.0

22.9 1.4 134.5 38.2 1.8 299.6 18.7 1.1 180.5

1.0 0.0 4.7 1.2 0.0 44.4 30.6 3.6 199.2

0.0 0.0 0.0 0.0 0.0 0.0 12.7 0.7 91.2

0.5 0.0 25.2 1.5 0.0 164.7 20.2 0.6 131.7

0.0 0.0 2.2 0.0 0.0 2.6 21.6 0.9 111.7

0.0 0.0 0.0 0.0 0.0 0.0 12.0 0.0 43.0

2.0 0.0 7.7 0.0 0.0 12.1 7.6 1.2 80.0

82.4 9.6 537.2 12.4 2.5 219.4 13.6 3.2 117.6

83.6 1.0 60.0 16.6 0.0 52.7 27.7 0.0 604.7

0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 3.7

00.0 12.0 882.5 200.0 13.4 1498.8 200.0 14.0 1817.4

84.3 78.6 80.4

2 3 3

1 1 1

3.5 4.5 5.6

0.9 1.2 1.8

0.3 0.3 0.3

tances and Ward’s method for plots in DMTNC (n = 229). Cluster dendrogram

.



Table 3

Indicator values (% of perfect indication) of each species from indicator species analysis for vegetation types in the Davis Mountains Protected Area (DMTNC) using

Euclidean distances

Species Pinyon pine (n = 73) Gray oak (n = 26) Alligator juniper (n = 66) Mesic woodland (n = 64) p-Value

Arbutus xalapensis 0 1 0 5 0.135

Juniperus deppeana 8 5 54 23 0.001
Pinus cembroides 43 7 16 21 0.001
Pinus ponderosa 0 0 2 12 0.048
Pinus strobiformis 0 0 0 5 0.049
Quercus emoryi 6 1 11 3 0.469

Quercus gambelii 6 0 0 7 0.354

Quercus gracilliformis 0 0 0 6 0.067

Quercus gravesii 0 1 0 3 0.415

Quercus ghsea 18 38 11 24 0.001
Quercus hypoleucoides 0 2 1 10 0.065

Quercus oblongifolia 2 0 0 1 0.635

Quercus shumardii 1 0 0 0 1

Significant indicator species ( p � 0.05) are indicated in bold, and were determined by a Monte Carlo test of significance of the observed maximum indicator value for

each species, based on 1000 randomizations.
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with the other species present in the understory as seedlings (0–

5 cm dbh) (Table 2, Fig. 4).

4.4. Alligator juniper forests

Alligator juniper forests were the dominant low elevation

vegetation type. J. deppeana was the major indicator species in

this vegetation type (Table 3), with P. cembroides and oak

species including Q. grisea, Q. emoryi, Q. hypoleucoides

present as minor associates. The AJ vegetation type was found
Table 4

Mean predictor variables for the vegetation types determined by cluster analysis of

Vegetation type

Pinyon pine (n = 73) Gray oak (n = 2

Elevation*** 2025 � 188.3 2050 � 15.2

Topopos_450** 6.8 � 3.9 5.3 � 3.1

Topopos_150* 1.9 � 1.2 0.0 � 1.0

Slope*** 19 � 1.3 20 � 1.2

PRR** 19558 � 551.8 20266 � 297.4

N flow direction** 0.6 � 4.1 �0.1 � 3.4

S flow direction** 1.0 � 13.2 0.8 � 10.2

Flow accumulation* 14 � 4.1 24 � 3.4

Topo configuration* 0.20 � 1.3 0.23 � 1.1

Sediment flow* 34 � 0.9 18 � 0.8

N aspect �0.08 � 0.0 0.02 � 0.0

S aspect �0.10 � 0.0 �0.07 � 0.2

Band 1*** 92 � 5.3 116 � 4.8

Band 2*** 92 � 5.5 116 � 5.6

Band 3*** 81 � 6.2 102 � 5.8

Band 4* 143 � 6.1 175 � 5.7

Band 5*** 105 � 12.0 134 � 8.7

Band 7*** 85 � 5.4 106 � 5.6

Brightness*** 194 � 6.0 212 � .5.2

Greeness*** �43 � 6.3 �49 � 5.2

Wetness*** �41 � 5.5 �50 � 5.3

SAVI*** �0.142 � 0.8 �0.189 � .0.9

Asterisks (*) next to the variable name denote significant differences in values betwee

p < 0.05, ** indicating significance at p < 0.01, and *** indicating significance a
at low elevations (<1900 m), and at higher elevations on

canyon walls, back slopes, and middle to upper elevation crests

(Fig. 3). This vegetation type dominated lower topographic

positions with gentle slopes, high PRR, and high runoff

(Table 4). Elevation, landform type, and band 7 (mid-infrared)

were the most important predictor variables for this vegetation

type based on recursive partitioning (Fig. 3). AJ stands had high

densities of J. deppeana and P. cembroides across size-classes

ranging from 0 to 25 cm dbh, and lower densities of small oaks

(0–5 cm dbh) in the understory (Table 2, Fig. 4).
species importance values in the Davis Mountains Protected Area (DMTNC)

6) Alligator juniper (n = 66) Mesic woodland (n = 64)

1800 � 26.7 2000 � 14.9

�3.0 � 6.0 �8.2 � 3.2

�0.5 � 1.8 �1.3 � 0.8

11 � 2.1 16 � 0.9

20133 � 411.8 18500 � 206.4

0.5 � 6.3 0.6 � 4.6

1.0 � 17.0 1.0 � 13.1

41 � 6.3 105 � 4.6

0.00 � 1.9 �0.11 � 0.8

26 � 1.6 11 � 0.8

0.09 � 0.0 0.09 � 0.1

�0.04 � 0.4 �0.03 � 0.0

101 � 7.4 83 � 4.2

101 � 8.1 83 � 4.6

90 � 9.7 72 � 4.2

144 � 8.9 143 � 4.6

125 � 24.1 100 � 2.9

102 � 8.0 78 � 4.1

206 � 9.2 191 � 4.9

�48 � 8.5 �40 � 5.0

�51 � 7.9 �42 � 4.0

�0.193 � 1.4 �0.115 � 0.8

n groups according to Kruskal–Wallis tests, with * indicating significance at the

t p � 0.001.



Fig. 3. Classification tree decision rules for fuel types in DMTNC. Vegetation

types were determined using hierarchical cluster analysis of species importance

values.

Table 5

Mean � S.E. values of fuel characteristics for fuel types in DMTNC determined from

method

Fuel type

1 (n = 91)

Fuel characteristics

Crown bulk density (kg m�3)* 0.093 � 0.025

100-h (kg ha�1)* 1913 � 227.1 (0.860)

1000-h (kg ha�1)* 7910 � 592.3 (3.566)

Logs (ha�1)* 77 � 366.0

Volume (m3 ha�1)* 4 � 42.3

Live BA (m2 ha�1)* 18 � 8.1

Standing dead BA (m2 ha�1) 2.3 � 4.4

Grass cover (%) 59 � 15.6

Shrub cover (%)* 24 � 18.3

Litter cover (%)* 57 � 16.9

Standing dead trees (ha�1)

5–10 cm 0 � 0.0

10–15 cm 0 � 0.0

15–20 cm 0 � 0.0

20–25 cm** 41 � 69.8

Live trees (ha�1)

0–5 cm* 1242 � 1279.6

5–10 cm* 357 � 321.3

10–15 cm* 340 � 224.4

15–20 cm* 170 � 100.0

20–25 cm** 72 � 53.6

25–30 cm 23 � 24.0

30–35 cm 13 � 20.0

35–40 cm 5 � 13.1

>40 cm* 4 � 13.0

Fuel loads of the fuel types are listed in tonnes/acre in parentheses. Asterisks (*) ne

according to Kruskal–Wallis tests, with * indicating significance at the p < 0.05 a
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4.5. Mesic woodlands

The MW vegetation type had the highest species richness of

any vegetation type (Table 2), and was mainly dominated by

mixed conifer forest species. Mesophytic tree species including

P. strobiformis, P. ponderosa, P. cembroides, and J. deppeana

were important indicator species in this forest cover type

(Tables 2 and 3). MW stands were found at middle and upper

elevations (1770–2330 m) in valley bottoms, with gentle

slopes, low PRR, low sediment flow and high flow accumula-

tion (Table 4). MW had the highest greenness, wetness, and

SAVI values of all vegetation types. SAVI was the most

important predictor of this vegetation type. Recursive

partitioning separated this group by SAVI, slope, and PRR

(Fig. 3). MW also had the highest stand height (5.6 m), live

crown height (1.8 m), tree basal area (14 m2 ha�1) and tree

density (1817 ha�1) of all forest cover types. MW stands had

high densities of Q. hypoleucoides, and lower densities of other

tree associates in the understory. Lower densities of P.

ponderosa, P. strobiformis, and Q. grisea comprised the forest

overstory (Table 2, Fig. 4).

4.6. Fuel types

Three fuel types were identified using cluster analysis and

mapped via recursive partitioning (Figs. 6 and 7). Fuel types
cluster analysis of fuel variables using relative Euclidean distances and Ward’s

2 (n = 59) 3 (n = 79)

0.071 � 0.002 0.069 � 0.002

4342 � 30.8 (1.953) 2534 � 28.9 (1.140)

6340 � 10.5 (2.853) 10783 � 182.6 (4.852)

11 � 7.0 89 � 24.8

1 � 3.0 14 � 10.5

10 � 0.8 11 � 0.8

1.7 � 0.3 2.1 � 0.3

58 � 2.5 56 � 2.3

18 � 1.3 25 � 2.0

45 � 2.8 48 � 2.1

0 � 0.0 0 � 0.0

0 � 0.0 1 � 0.0

0 � 0.0 0 � 0.0

25 � 8.5 24 � 4.4

157 � 23.8 353 � 43.8

81 � 12.0 131 � 18.8

114 � 14.4 171 � 19.0

82 � 9.5 108 � 9.4

47 � 5.9 47 � 4.3

23 � 4.3 22 � 3.1

12 � 2.5 11 � 1.9

3 � 1.2 4 � 1.5

9 � 0.8 14 � 1.4

xt to the variable name denote significant differences in values between groups

nd ** indicating significance at p < 0.01.



Fig. 4. Size-class distributions (# ha�1) of tree species in 5 cm size-classes for vegetation types in DMTNC determined using cluster analysis. The x-axis represents

size class, and the y-axis represents the # trees per ha. Note that the scale of the y-axis differs between graphs.
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varied significantly by fuel characteristics in DMTNC

(Table 5), topography (landscape metrics), and spectral

signature (Landsat ETM+ data) (Table 6, Fig. 7). PRR,

brightness, greenness, wetness, SAVI, and mid-infrared

reflectance (band 7) were the most important

predictor variables for determining fuel loadings in DMTNC

(Table 6).
Fig. 5. Mean stand age for 230 forest stands in DMTNC based on tree age data

in 10-year age-classes (n = 430).
4.7. Fuel type 1

Fuel type 1 had highest CBD (0.093 kg m�3), litter cover,

live (18 m2 ha�1) and standing dead (2.3 m2 ha�1) basal area,

and live tree density of all fuel types. This group contained

197 kg ha�1 of 10 h fuels, 1913 kg ha�1 of 100 h fuels, and

7910 kg ha�1 of 1000 h fuels (Table 5). While this type did not

have the highest 100 and 1000 h fuels, it contained the largest

mixture of live and dead fuels. Type 1 fuels were found on sites

with low PRR and soil brightness, and high wetness, greenness,

and SAVI. SAVI, elevation, and PRR were the three most

important predictor variables for this fuel type according to

recursive partitioning (Fig. 7).

4.8. Fuel type 2

Fuel type 2 was characterized by high 100 h fuel loads

(4342 kg ha�1), intermediate CBD (0.071 kg m�2) and 1000 h

fuels (6340 kg ha�1), low log frequencies (11 ha�1), low shrub

and litter cover, and few live and standing dead trees (Table 5).

Like fuel type 1, the primary carriers of fire were short stature

trees and their associated dead and down fuels, although tree

cover and fuel loads were higher in this type than in fuel type 1.

Type 2 fuels were found on sites with high PRR, brightness and

flow accumulation, and low SAVI, wetness, and greenness

(Table 6). Mid-infrared reflectance and flow direction were the



Fig. 6. Fuel map for the Davis Mountains Preserve (TMTNC) developed using

recursive partitioning. Fuel types were determined using hierarchical cluster

analysis.

Fig. 7. Classification tree decision rules for fuel types in DMTNC. Fuel types

were determined using hierarchical cluster analysis of fuel variables. Predictor

variables used in the classification include brightness, bands 1 and 5, landform,

soil adjusted vegetation index (SAVI), potential relative radiation (PRR), and

flow direction.

Table 6

Mean � S.E. values of landscape metrics and Landsat ETM+ derived variables

for fuel types in DMTNC determined from cluster analysis of fuel variables

using relative Euclidean distances and Ward’s method

Landscape

metrics and

Landsat ETM+

1 (n = 59) 2 (n = 79) 3 (n = 91)

Elevation (m) 1775 � 13.6 1996 � 203.9 1992 � 16.6

Slope (8) 21 � 0.8 19 � 1.1 16 � 0.8

PRR** 20411 � 238.3 19462 � 254.5 19339 � 272.9

N aspect �0.547 � 0.1 �0.097 � 0.1 0.791 � 0.1

S aspect 0.837 � 0.1 0.087 � 0.1 0.612 � 0.1

Topopos 450 �167.52 � 2.9 1.90 � 169.6 �3.93 � 3.4

Topopos 150 �168.81 � 0.9 0.65 � 169.5 �0.71 � 1.0

N flow direction* �0.15 � 0.1 �0.12 � 0.1 0.11 � 0.1

S flow direction 0.34 � 0.1 0.12 � 0.1 0.15 � 0.1

Flow accumulation �144 � 15.1 33 � 170.1 38 � 15.8

Topographic

configuration

0.11 � 0.1 0.11 � 0.2 �0.07 � 0.1

Band 1*** 118 � 3.9 97 � 5.5 79 � 4.8

Band 2 118 � 3.9 97 � 5.5 79 � 4.8

Band 3 107 � 3.7 86 � 5.7 67 � 4.5

Band 4 166 � 4.9 142 � 5.8 139 � 4.7

Band 5 135 � 4.4 113 � 5.8 98 � 5.2

Band 7*** 111 � 3.8 92 � 5.6 75 � 4.6

Brightness*** 202.5 � 5.1 206.8 � 6.7 189.8 � 5.9

Greeness*** �46.8 � 3.7 �49.5 � 6.3 �39.3 � 4.3

Wetness*** �47.0 � 4.6 �47.8 � 6.1 �41.2 � 5.4

SAVI*** �0.18 � 4.0 �0.20 � 6.2 �0.11 � 4.2

An asterisk (*) marks values that are significant at the p < 0.001, and a double

asterisk (**) marks values that are significant at the p < 0.05 level according to

Kruskal–Wallis tests.
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primary predictors of type 2 fuels based on recursive

partitioning (Fig. 7).

4.9. Fuel type 3

Fuel type 3 contained highest 1000 h fuel loads

(10,783 kg ha�1), log frequencies (11 ha�1), and wood volume

(14 m3 ha�1)ofallfueltypes.However, itwasintermediateinall

otherfuelcharacteristicsincludinglive(11 m2 ha�1)andstanding

dead (2.1 m2 ha�1) BA, CBD (0.069 kg m�3), shrub and litter

cover, and live and standing dead tree densities (Table 5). Type 3

fuelswerealsofoundonintermediatesitesintermsoftopography

andspectralsignature(Table6,Fig.7).PRR,flowdirection,band1

(blue),andband5(mid-infrared)werethemostimportantpredictor

variables for this fuel type according to recursive partitioning

(Fig.7).

4.10. Accuracy assessment

Mean overall classification accuracies were 29.1% (range

27.3–36.1%) for the vegetation map, and 29.8 (range 24.5–

34.4) for the fuels map (Table 7). Mean Kappa values were 0.55

(range 0.48–0.61) for the vegetation map and 0.54 (range 0.47–

0.62) for the fuels map (Table 7). Omission and commission

errors for the vegetation and fuels maps were relatively low

(Tables 8 and 9).



Table 7

Vegetation and fuel map validation results

Vegetation map Fuel map

Misclassification (%)

Mean 29.1 29.8

Minimum 27.3 24.5

Maximum 36.1 34.4

Kappa (K)

Mean 0.55 0.54

Minimum 0.48 0.47

Maximum 0.61 0.62

Values represent mean, minimum and maximum Kappa statistic (range 0–1) and

misclassification rate (%) for 1000 iterations of random data selection. Random

data selection was performed by iteratively sub-setting the data 1000 times,

using 80% of the data to build the model and 20% of the data to validate the

models for each iteration.
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5. Discussion

5.1. Forest distribution patterns

The sorting of tree species by elevation, landform, slope,

PRR and spectral reflectance in DMTNC is related to intrinsic

properties of the vegetation and the physiological ecology of

these species in relation to drought and temperature tolerance.

Lower elevations of the Southwest are hotter and drier than

upper elevations (Barry, 1992). Junipers can tolerate lower pre-

dawn and mid-day water potentials and are more resistant to

xylem cavitation than pinyon pine (Linton et al., 1998). The

dominance of alligator juniper on dry low elevation sites

compared to dominance of pinyons on dry mid to high elevation

sites in DMTNC and other Southwestern mountains systems is

consistent with their physiological capacity to survive and grow

in hot, dry conditions.
Table 8

Confusion matrix for the vegetation map produced for DMTNC via recursive part

Vegetation type Mesic

woodland

Pinyon pine

Mesic woodland 44 13

Pinyon pine 11 50

Gray oak 2 0

Alligator juniper 7 10

Total 64 73

Errors of omission/user’s accuracy (%) 69 68

Table 9

Confusion matrix for the fuels map produced for DMTNC via recursive partitioni

Fuel type 1 2

1 33 0

2 18 63

3 8 16

Total 59 79

Errors of omission/user’s accuracy (%) 56 42
Although pinyon pines are less drought tolerant than

junipers, they are more drought tolerant than upper elevation

and valley bottom species such as P. ponderosa and P.

strobiformis. Field and greenhouse drought experiments on

pines of the Chiricahua Mountains indicated that pinyon pines

survived longer than other pines under persistent drought

conditions and they experienced little change in internal water

potential, while other pine species experienced a precipitous

decline in water potential that was ordered by their elevational

distribution (P. discolor > P. leiophylla > P. ponderosa)

(Barton and Teeri, 1993). Other research on P. cembroides in

DMTNC indicated that P. cembroides was able to tolerate a

wide range of site conditions, making it a site generalist species

in comparison to species with more restricted distributions

including P. ponderosa and P. strobiformis (Poulos and Berlyn,

in press). This suggests that the distribution of pines in DMTNC

is closely related to species’ abilities to survive and reproduce

across the range of site conditions present in DMTNC.

The species-environment relationships in DMTNC were

similar to those reported for other mountain ranges in the

Southwest, where elevation, soil moisture, and substrate type

were identified as important variables contributing to species’

sorting patterns (Whittaker and Niering, 1965, 1968; Went-

worth, 1981; White and Vankat, 1993; Barton, 1994). Similarly,

we identified elevation as a dominant environmental gradient,

but we also found that landform, slope, and PRR were other

important predictors of vegetation type in DMTNC.

Differences in the spectral characteristics of the vegetation

types in DMTNC were also related to the intrinsic character-

istics of the vegetation. High SAVI, greenness, and wetness in

MW were the result of dense vegetation in the moist valley

bottoms of DMTNC. Similarly, high brightness in oak

woodlands corresponded to the abundant grass cover in this

savannah-like vegetation type.
itioning

Gray oak Alligator juniper Total Errors of commission/

producer’s accuracy (%)

3 10 70 63

8 3 72 69

15 2 19 79

1 51 69 74

27 66

42 77

ng

3 Total Errors of commission/

producer’s accuracy (%)

4 37 89

20 101 62

67 91 74

91

36
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5.2. Forest stand structure

The high densities of small-diameter trees (�10 cm DBH) in

all vegetation types, coupled with the major recruitment of

pines in around 1920 suggests that the current forest structure in

DMTNC may be the product of fire exclusion by livestock

grazing and favorable climatic conditions after pine germina-

tion. A major fire event in occurred in DMTNC 1916 (Poulos,

unpublished data), which took place only 3 years prior to the

well-recorded recruitment event of ponderosa pine in 1919 in

Arizona in response to wetter than normal climatic conditions

(Cooper, 1960; White, 1985). 1919 was also an extremely wet

year in DMTNC (Poulos, unpublished data), suggesting that the

combined effects of the 1916 fire and the 1919 climatic

anomaly probably fostered the recruitment and survival of

pines at the seedling stage.

The survival of these young trees to adulthood was most

likely related to the subsequent drop in fire frequency in

DMTNC in the early 1900s. Cattle, sheep, and goat stocking

rates were extremely high at the end of the 19th century.

During this era high stocking rates ranging from 4.1 to

12.3 acres/animal unit were typical in west Texas, compared

to present day stocking of 75–200+ acres/animal unit

(Downey, 1978; Clayton, 1993). Such high stocking rates

are thought to effect forests by removing the fine fuels

necessary for fire ignition and spread (Leopold, 1924; Arnold,

1950). High stocking rates were typical of ranchlands across

the western United States in the late 1800s and early 1900s,

and they are generally considered a major cause of the

cessation of fire in the early 1900s in the West that probably

triggered large-scale tree recruitment pulses after the

cessation of fire (Cooper, 1960).

The high density of small diameter trees across in DMTNC

corresponds to the recent tree recruitment patterns observed in

other fire-excluded sites in the southwestern United States.

Stand densities in DMTNC were most similar to those observed

in the Guadalupe Mountains, only 150 miles to the north

(Sakulich and Taylor, 2007), where mixed conifer forests (MW

in this study) also had tree densities of over 1500 stems ha�1.

While densities were similar in mixed conifer forests, DMTNC

had much higher tree densities than the Guadalupe Mountains

in pinyon and juniper dominated vegetation types. Tree

densities in DMTNC were also similar to the fire-suppressed

mixed conifer forests in the Camp Navajo Army National

Guard Base and in the San Francisco Peaks of Arizona, which

had 1436 and 1613 stems ha�1, respectively (Fulé et al., 1997;

Heinlein et al., 2005).

The differences between conifer and oak diameter distribu-

tions in DMTNC were probably related to species life history.

Ponderosa pine, southwestern white pine, pinyon pine and

alligator juniper all regenerate readily via seed within 10–20

years after fire (Krugman and Jenkinson, 1974; Sackett, 1984).

In contrast, major oak recruitment events occur through post-

fire sprouting in the Southwest, with some regeneration

occurring via seed in the absence of fire (Keeley, 1992;

Barton, 1999). This suggests that that the high densities of

intermediate sized oaks in DMTNC may have been a remnant
of post-fire sprouting of oaks following the last major fire event

in DMTNC.

5.3. Fuel accumulation patterns

Our results suggested that the distribution of larger fuels

across dissected landscapes was closely associated with some

of the same factors that influenced the distribution of

vegetation, although the mechanisms responsible for these

patterns were not identical. The differences between the

vegetation and fuels maps highlight that fuel loads were not

directly related to vegetation types, reinforcing the claim by

Keane et al. (2001) that vegetation maps should not be used as

the sole basis for fuels mapping.

In general, higher productivity sites existed at high

elevations in response to more favorable climatic conditions

with increasing elevation (Barry, 1992). The pattern of high fuel

accumulation in high productivity sites in DMTNC is

consistent with research in other parts of the western U.S.,

where forests on high productivity sites averaged more pieces

and volume ha�1 of down wood than low productivity sites

(Harmon et al., 1986; Spies et al., 1988).

The topographic effects on fuel distribution patterns were

similar to those for vegetation, but the relationship between

topographic position and gravity underscored the pattern of fuel

heavy fuel loads in valley bottoms and low fuel loads on mid-

slopes and ridgetops. The fact that mesic valley bottoms are

more productive than mid-slopes that receive high amounts of

incident solar radiation partially explains the trend of higher

fuel loads on lower topographic positions. Valley bottoms also

receive sedimentation from upland areas during rainstorms, and

fuels often settle in lower topographic positions by rolling down

hill from middle and upper topographic positions. Likewise,

steeper slopes contain lower amounts of fuel because they wash

downward to flatter areas. The combined effects of higher site

productivity, fuel accumulation from upslope outwash and

gravity, and in situ fuel contributions from vegetation in valley

bottoms potentially explain why fuel loads were highest in

lower topographic positions in our study. These patterns are

consistent with the limited body of work that has examined the

relationships between the distribution of fuels and topography

(Rubino and McCarthy, 2003; Graham and McCarthy, 2006).

However, our work presents new information about the

distribution of larger fuels at the landscape-scale in the

southwestern United States that can be used to help managers

target locations on the landscape that are in most need of fuel

reduction treatments.

The high density of small trees and the CBD of vegetation in

DMTNC were direct measures of the amount of live fuels that

could potentially carry a fire across the landscape and serve as

ladder fuels to move a fire from the forest floor to the canopy.

Live fuels are high in the Southwest due to recent increases in

tree recruitment in the absence of frequent, low intensity fire.

Contemporary forest stand structures in DMTNC are quite

different from the open, park-like forests that are thought to

have dominated the Southwest prior to grazing and fire

suppression (Cooper, 1960). Recent changes in fuel loads
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increase the risk of severe, high intensity fires that are

dramatically different from historically frequent, low intensity

fire regimes.

Our findings in DMTNC were consistent with live fuel loads

in the Huachuca Mountains of southeastern Arizona (Miller

et al., 2003) and in the Grand Canyon (Fulé et al., 2004). CBD

estimates in DMTNC were also similar to other pinyon-juniper

and ponderosa pine forests in the Mogollon Rim (Hampton

et al., 2003) ranging between 0.05 and 0.1 kg m�3, but were

intermediate compared to more mesic upland forests of Idaho

(Falkowski et al., 2005) and Washington (Wimberly et al.,

2003) which can be higher than 0.15 kg m�3.

Standing dead and dead and down fuels in DMTNC

corresponded closely to fuel loads reported for other fire-

suppressed sites in the Southwest, suggesting that these forests

are susceptible to future high intensity fire. Sackett (1979)

reported an average of 7.8 tonnes/acre of large woody fuels in

northern Arizona and Harrington (1982) reported an average of

4 tonnes/acre in open old growth forests and 10 tonnes/acre in

closed, overstocked forests in southeastern Arizona. Type 2

fuels in DMTNC corresponded closely to the fuel loads of

larger fuels in open forests in Harrington’s (1982) study, and

type 3 fuels were similar to his closed forest fuel loads. Large

diameter fuels in DMTNC were also similar to more recent

work in pinyon–juniper and oak savanna woodlands by Miller

et al. (2003) and Sanchez-Flores and Yool (2004), and the low

fuel loadings of fuel type 1 corresponded closely to the open

juniper and oak savannas studied by Miller et al. (2003).

Our misclassification rates of approximately 30% were

typical of other vegetation mapping projects that used decision

tree classifiers. Other overall misclassification rates for

predicting vegetation and fuels using classification tree and

biophysical gradient models ranged from 11% to 33%

(Franklin, 1998, 2002; Miller et al., 2003; Brown de Colstoun

et al., 2003; Falkowski et al., 2005). The misclassification rates

near 30% reflected the difficulty of reducing ecological

processes like species distribution and fuel accumulation

patterns to numerical models. Moreover, our project mapped

distinct vegetation assemblages at the species level, rather than

the majority of vegetation mapping studies that assign

vegetation types to broader categories such as oak, grassland,

or conifer cover types. Spectral confusion from overlap in

species composition among vegetation types probably explains

the error rates in our study, especially since species like juniper

and pinyon pine were distributed across multiple vegetation

types. For example, all vegetation types contained some pinyon

pine, alligator juniper, and gray oak, which made it difficult to

differentiate between classes containing different densities of

these species. GO forests had the lowest user accuracy of all

groups, probably because they were spectrally similar to PP

forests, and were found on similar sites. MW had the lowest

producer’s accuracy, which was also potentially related to the

fact that this forest cover type contained the highest species

richness of all vegetation types, and therefore had high potential

confusion with other types. The fuel decision tree also

performed well for predicting fuel loads across the landscape

of DMTNC. Some confusion did occur between fuel types,
which was probably also due to overlap in the spectral signature

of live fuels and environmental site characteristics.

6. Conclusion

The results from this study provided decision support tools

for the mitigation of fire hazards and the restoration of forest

vegetation to its pre-fire suppression state. The integrated

classification tree approach applied to this study proved to be an

effective tool for quantifying vegetation and fuel abundance

and distribution patterns and for predicting them across the

landscape of DMTNC. Our combined use of detailed field data,

biophysical gradient modeling, and remotely sensed spectral

information provided detailed information about the factors

that governed the abundance of vegetation, forest stand

structure, and the accumulation of fuels in DMTNC.

Furthermore, we believe that the methods applied to this study

could be applied to other regions of the Southwest where

detailed forest and fuel inventory data are lacking.

The information provided by this study can be used for a

range of forest and fire management activities, although

restoration of vegetation and fuels to conditions that resemble

pre-fire suppression conditions may not be a feasible goal on all

forestlands. Nature Conservancy managers in DMTNC are

committed to maintaining ecosystem structure and function

through active management (i.e. forest thinning and prescribed

burning). Our results provided baseline information about

recent changes in forest stand structure, and the abundance and

distribution patterns of vegetation and fuels in DMTNC, which

can be used to target high-risk areas on the landscape for tree

density and fuel reduction treatments using thinning and

prescribed fire. Outputs from our work can also be input into

forest simulation programs including the fire effects module of

FVS (Crookston, 1997) and Landscape Management Software

(LMS) (Carey et al., 1996), which could be used for planning

and implementation of vegetation and fuel restoration

treatments.
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