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Abstract. Space and airborne sensors have been used to map area burned, assess characteristics ofactive fires, and 
characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms 
can result in the potential misuse of the inferred information by land managers and remote sensing practitioners 
who require unambiguous remote sensing products for fire management. The objective of the present paper is to 
provide a comprehensive review of current and potential remote sensing methods used to assess fire behavior and 
effects and ecological responses to fire. We clarify the terminology to facilitate development and interpretation 
of comprehensible and defensible remote sensing products, present the potential and limitations of a variety of 
approaches for remotely measuring active fires and their post-fire ecological effects, and discuss chalIenges and 
future directions of fire-related remote sensing research. 
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Introduction 

Fire is an important ecosystem process that signifi­
cantly impacts terrestrial, aquatic, and atmospheric systems 
throughout the world. Over the past few decades, wild­
fires have received significant attention because of the wide 
range of ecological, economic, social, and political values 
at stake. AdditionalIy, fires impact a wide range of spatial 
and temporal scales, and stakeholders are only beginning 
to understand relationships between pattern, process, and 
potential restorative measures. 

At the local scale, fire can stimulate soil microbial 
processes (WelIs et al. 1979; Borchers and Perry 1990; 
Poth et al. 1995; Wan et al. 200 I; Choromanska and 
DeLuca 2002), promote seed germination, seed production, 
and sprouting (Lyon and Stickney 1976; Hungerford and 
Babbitt 1987; Anderson and Romme 1991; Lamont et al. 
1993; Perez and Moreno 1998), and combust vegetation, ulti­
mately altering the structure and composition of both soils 
and vegetation (Ryan and Noste 1985; Wyant et al. 1986; 
Ryan and Reinhardt 1988; McHugh and Kolb 2003). 

At the regional scale, fires may also affect the quantity 
and quality of water yield (MinshalI et al. 2001; Spencer 
et al. 2003), accelerate erosion and sedimentation (Scott and 
Van Wyk 1990; Robichaud et al. 2000; Ice et al. 2004) and 
result in a myriad of beneficial, neutral, or detrimental con­
sequences for aquatic systems (GresswelI 1999; Vieira et al. 
2004). Wildfires are potentialIy hazardous to human life and 
property (Bradshaw 1988; Beebe and Omi 1993; Cohen and 
Butler 1998; Cohen 2000), and the economic costs of fire 
management and suppression in the United States have over 
the past two decades been among the highest on record. 
Departure from the historical frequency, timing, extent, and 
severity of some fires, particularly in the dry forests, has led 
to significant ecological and policy changes (DelIasalIa et al. 
2004). Fire is also important in the creation and maintenance 
of landscape structure, composition, function, and ecolog­
ical integrity (Covington and Moore 1994; Morgan et al. 
2001), and can influence the rates and processes of ecologi­
cal succession and encroachment. At local to regional scales, 
criteria polIutants (e.g. ozone, carbon monoxide, nitrogen 
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Table 1. Remote sensing systems relevant to fire detection and monitoring 

VIS-MIR, visible, mid-infrared; TIR, thermal infrared 


Sensor and additional web resources Temporal 
resolution 

Advanced Along Track Scanning Radiometer 2 days 
http://www.le.ac.ukiph/research/eos/aatsr/ 

Advanced Land Imager 16 days 
http://eol.gsfc.nasa.gov/Technology/ALIhomel.htm 

Advanced Spacebome Thermal Emission and 16 days 
Reflection Radiometer 

http://asterweb.jpl.nasa.gov/ 
Along Track Scanning Radiometer 3 days 

http://www.atsr.rl.ac.uki 
Advanced Very High Resolution Radiometer 4 daily 

http://www.nesdis.noaa.gov/ 
Hot Spot Recognition Sensor System 

http://www.itc.nl/research/products/sensordb/ 
getsen.aspx?name=HSRS 

Hyperion 16 days 
http://eol.gsfc.nasa.gov/technologyihyperion.html 

IKONOS 3 days 
http://www.spaceimaging.com/ 

Indian Remote Sensing-I A,S 22 days 
http://www.isro.org/ 

Indian Remote Sensing-I S,C 24 days 
http://www.isro.org/ 

Landsat 5, 7 16 days 
http://landsat.gsfc.nasa.gov/ 

Moderate Resolution Imaging Spectroradiometer 4 daily 
http://modis.gsfc.nasa.gov/ 

Quickbird 1-5 days 
http://directory.eoportal.orgipres_QUICKBIRD2.html 

VEGETATION I daily 
http://www.spot-vegetation.com/ 

dioxide, sulphur dioxide, and particulate matter) emitted by 
fires impact air quality (Hardy et al. 2001) and raise concern 
about risks to human health (Brauer 1999). 

At the global scale, fire emissions have direct and sig­
nificant impacts on atmospheric and biogeochemical cycles 
and the Earth's radiative budget (Crutzen and Andreae 1990; 
McNaughton et al. 1998; Andreae and Merlet 2001; Smith 
et al. 2005a). The influence of fire spans a wide range of 
temporal and spatial scales, and the interpretation of causal 
factors, fire effects, and ecosystem response is a challenge to 
both research and management. 

These issues of scale and more practically, the size and 
inaccessible nature ofmany wildfires, make remotely sensed 
data an important and widely applied resource for fire science 
and management (Hardy et al. 1999). Space and airborne 
sensors have been used to assess environmental conditions 
before and during fires and to detect changes in post-fire 
spectral response (Table 1). Remotely sensed data have been 
used to detect active fires (Roy et al. 1999; Ichoku et al. 
2003); map fire extents at local (Parsons 2003; Holden et al. 
2005), regional (Eva and Lambin 1998a; Smith et al. 2002) 
and continental (Scholes et al. 1996) scales; estimate surface 

Spatial resolution 
(km) 

VIS-MIR bands 
(~m) 

TIR bands 
(~m) 

1.00 0.56,0.66, 0.86, 1.6 3.7, II, 12 

0.0IM.09 

0.015-0.09 

0.44,0.48,0.56,0.64,0.79, 
0.87, 1.25, 1.65,2.23 
0.56,0.66,0.82, 1.65,2.17, 
2.21,2.26,2.33,2.34 

8.3,8.65,9.1, 
10.6, I I.3 

1.00 0.55,0.67,0.87, 1.6 3.7, 10.8, 12 

1.10 0.63,0.91,1.61 3.74, II, 12 

0.37 3.8,8.9 

0.03 [220 bands: 0.38--2.5 ~ml 

0.001-0.004 0.48,0.55,0.67,0.81 

0.036--0.072 0.55,0.65,0.83 

0.023-0.188 

0.015-0.09 0.48, 0.56, 0.66, 0.85, 11.5 
1.65,2.17 

0.25-1.0 19 bands 16 bands 

0.001-0.004 0.48,0.56, 0.66, 0.83 

1.15 0.55, 0.65, 0.84, 1.62 

and crown fuel loading (Nelson et al. 1988; Means et al. 
1999; Lefsky et al. 2002; Falkowski et al. 2005); assess 
active fire behavior (Kaufman et al. 1998; Wooster et al. 
2003; Smith and Wooster 2005; Dennison 2006; Dennison 
et al. 2006); examine post-fire vegetation response (Turner 
et al. 1994; White et al. 1996; Diaz-Delgado et al. 2003), 
and identify areas where natural recovery may prove to be 
problematic (Bobbe et al. 2001; Ruiz-Gallardo et al. 2004). 
Multi-temporal remote sensing techniques have been effec­
tively employed to assess and monitor landscape change in a 
rapid and cost-effective manner. Remotely sensed data give 
researchers a means to quantify patterns ofvariation in space 
and time. The utility of these data depends on the scale of 
application. Coarse-scale maps of fire regimes based largely 
on remotely sensed biophysical data have been used for plan­
ning and prioritizing fuels treatments at regional and national 
levels, but may have limited local applicability (Loveland 
et al. 1991; Morgan et al. 1996, 200 I; Hardy et al. 1999). 
Higher spatial-resolution remote sensing of spectral patterns 
before, during, and after wildfire may facilitate prediction 
of areas likely to burn or experience uncharacteristic effects 
when they burn, and may assist with strategic decisions about 
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fuels management before fires occur, suppression as fires 
bum, and post-fire rehabilitation efforts. 

Since the mid 1980s, numerous remote sensing techniques 
have been developed to assess how 'severe', in terms of eco­
logical change, a fire is on both local and regional ecosystems. 
Early studies inferred fire-caused vegetation change from 
spectral changes measured by satellite sensors, whereas more 
recent studies have sought to relate ecological measures to 
fire-induced physical changes on the land surface (e.g. Milne 
1986; Jakubauskas et al. 1990; White et al. 1996). When 
vegetation is burned, there is, at the spatial resolution ofmost 
satellite sensors (pixel size >30 m), a drastic reduction in 
visible-to-near-infrared surface reflectance (i.e. 0.4-1.3 11m) 
associated with the charring and removal of vegetation (Eva 
and Lambin 1998a; Trigg and Flasse 2000). At finer spa­
tial resolutions (pixel size <5 m), the combustion of large 
quantities of wood (or other fuels) can in some cases lead 
to an increase in surface reflectance due to the deposition 
of white ash (Landmann 2003; Roy and Landmann 2005; 
Smith and Hudak 2005; Smith et al. 2005b). This is typically 
accompanied by a rise in short wave infrared reflectance (i.e. 
1.6-2.5 11m) and brightness temperatures, which is attributed 
to the combined effects of increased soil exposure, increased 
radiation absorption by charred vegetation, and decreased 
evapotranspiration relative to the pre-fire green vegetation 
(Chuvieco and Congalton 1988; Eva and Lambin 1998a, 
1998b; Stroppiana et al. 2002; Smith et al. 2005b). The degree 
of post-fire change may vary depending on vegetation type, 
annual differences in growing season weather, and overall 
time since fire. For this reason, stratification among vege­
tation types, comparison of images with similar vegetation 
phenology, and image differencing techniques including pre-, 
immediate post-, and l-year-post-fire images have been rec­
ommended to assess fire effects and ecological change (White 
et al. 1996; Cocke et al. 2005; Hudak et al. 2005). Further 
fire effects such as canopy mortality, ground charring, and 
changes in soil color can be readily detected, provided sen­
sors have adequate spatial and spectral resolution (White et al. 
1996). 

The observation of broad spectral changes due to burning 
has led to the use ofa variety ofspectral indices (combinations 
of different sensor bands), including the Normalized Bum 
Ratio (NBR), the difference in the Normalized Burn Ratio 
between pre- and post-fire images (dNBR), and the Normal­
ized Difference Vegetation Index (NDVI). NBR and dNBR 
are widely used to infer fire severity from remotely sensed 
data (Key and Benson 2002, 2006; van Wagtendonk et al. 
2004; Cocke et al. 2005; Smith et al. 2005b; Roy et al. 2006) 
and are commonly used to produce maps for Burned Area 
Emergency Response (BAER) teams (Parsons 2003). Other 
recent remote sensing research has focused on the develop­
ment of techniques used to remotely infer fire behavior and 
fuel combusted through the assessment of thermal infrared 
imagery (Kaufman et al. 1998; Wooster 2002; Riggan et al. 
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2004; Roberts et al. 2005; Smith and Wooster 2005; Wooster 
et al. 2005; Zhukov et al. 2006). 

The objective of the present paper is to review current 
and potential remote sensing tools and techniques that can 
quantify and monitor fire-related processes that cause change 
in soil and vegetation. For information on the remote sens­
ing of fuels and fire hazards, see Keane et al. (2001), Hardy 
(2005), and Tian et al. (2005). In the present paper, we clarify 
the terminology to facilitate development and interpretation 
of comprehensible and defensible remote sensing products, 
presentthe potential and limitations ofa variety ofapproaches 
for remotely measuring active fires and their post-fire eco­
logical effects, describe field assessment of surface change, 
and discuss management implications and future directions 
of fire-related remote sensing research. 

Fire and tire effects terminology 

The terms fire intensity, fire severity, and bum severity are 
three descriptors that exist on a temporal continuum associ­
ated with pre-fire conditions, active fire characteristics, and 
post-fire ecosystem response (DeBano et al. 1998; Jain et al. 
2004). 

Although remotely sensed imagery has been used to assess 
each ofthese descriptors, there remains a need to clarify link­
ages between remotely sensed measurements and the physical 
or ecological processes that each measure infers. Addition­
ally, overlapping and inconsistent use of fire terminology 
has created a need to spell out the ecological meanings and 
implications of each term. For instance, the term 'severity' 
is frequently used to describe the magnitude of ecologi­
cal change caused by fire. In the remote sensing literature, 
severity has been related to vegetation consumption (Conard 
et al. 2002; Miller and Yool 2002; Kasischke and Bruhwiler 
2003; Zhang et al. 2003), white ash production (Landmann 
2003; Smith and Hudak 2005), changes in surface reflectance 
(White et al. 1996; Key and Benson 2002; Smith et al. 2005b), 
alteration of soil properties (Ketterings and Bigham 2000; 
Lewis et al. 2006), and long-term post-fire vegetation mortal­
ity and recovery (Patterson andYooI1998). In some cases, fire 
descriptors of intensity and severity are used interchangeably 
within the same document (e.g. White et al. 1996; Diaz­
Delgado et al. 2003; Landmann 2003), and exactly what is 
being measured is often unclear or largely inferential. More 
often, however, severity is used very generally, without refer­
ence to a specific process (soil, hydrologic, vegetation) or 
vegetation strata (understory, overstory). In particular, the 
terms fire severity and bum severity are often confused and 
used interchangeably in both the ecological and remote sens­
ing literature. Although this confusion has been highlighted 
by recent studies (e.g. Hardy 2005; Smith et al. 2005b), 
clarification of the different fire descriptors is needed. 

One of the sources of confusion arises owing to where 
on the temporal gradient the fire severity and bum severity 
terms lie. Fire severity is usually associated with immediate 
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post-fire measures (e.g. vegetation consumption, vegetation 
mortality, soil alteration), whereas burn severity relates to 
the amount of time necessary to return to pre-fire levels or 
function. For example, in grassland ecosystems, fires typi­
cally consume large portions ofaboveground biomass, which 
would be indicative of high fire severity. However, in these 
ecosystems, grasses and forbs typically rejuvenate quickly, 
indicating low burn severity. It is apparent that although 
fire severity may refer to short-term effects more directly 
related to fire intensity, the overlap between fire severity 
and burn severity is inevitable. We will clarify each term 
and then propose adoption of more precise and descriptive 
terminology. 

Fire descriptors 

Fire intensity is a description of fire behavior quantified by 
the temperature of, and heat released by, the flaming front of 
a fire (Whelan 1995; Neary et al. 1999; Morgan et al. 2001). 
Fire intensity is measured by two factors: the rate of spread, 
calculated by the number of meters burned per second, and 
energy flux, the amount ofkilowatts a fire generates per meter 
burned. Physical attributes used to quantify fire intensity 
include temperature, flame length duration, and the emission 
ofpyrogenic gases. Fire intensity and rate ofspread are partly 
controlled by factors such as vegetation type (forests, shrubs, 
herbaceous plants), vegetation moisture content, weather 
(wind speed, atmospheric stability, and humidity), and topog­
raphy (DeBano et at. 1998). Fire intensity can be measured 
by measuring kinetic temperature (via thermocouples), via 
thermal remote sensing systems, or by inferring observations 
of flame length and fire spread rate (Key and Benson 2002; 
Smith et al. 2005b; Dennison et at. 2006). Fire intensity is 
typically reported in kilojoules per second per meter. 

Fire severity integrates active fire characteristics and 
immediate post-fire effects on the local environment. Even 
though the fire intensity often influences fire severity (Key 
and Benson 2002; van Wagtendonk et al. 2004), these phe­
nomena are not always correlated (Hartford and Frandsen 
1992; Neary et at. 1999; Miller and Yool 2002; Smith et at. 
2005b). Fire severity differs from fire intensity by its focus 
on how much of the duff, logs, and other dense organic 
matter on the soil surface burns (Parsons 2003; Ice et al. 
2004). Fire behavior may be simultaneously influenced by 
several factors, resulting in high vertical and horizontal spa­
tial heterogeneity of fire effects and subsequent ecological 
responses. Fire duration, which determines the amount of 
heat transferred to the soil and the amount of aboveground 
vegetation consumed, often has a greater impact on fire sever­
ity than the fire intensity (Neary et al. 1999). In turn, the 
nature of the fuels available for burning and fire duration 
determine the energy produced by the fire and are the con­
tributing forces for many ecosystem fire effects (DeBano 
et al. 1998). For example, a high-intensity, fast-moving fire 
transfers less heat into the soil (i.e. most of the energy is 
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dissipated horizontally and vertically via radiation or convec­
tion) than a low-intensity, slow-moving (or smouldering) fire, 
and therefore leaves belowground processes largely intact. 
A high-intensity fire of the former type may actually benefit 
the ecosystem by increasing the amount ofavailable nutrients 
(Neary et al. 1999), and as such would be correctly described 
as low fire severity. In contrast, a low-intensity slow-moving 
fire impacts aboveground and belowground plant compo­
nents, killing a majority ofthe vegetation, and therefore might 
have a more immediate impact on ecosystem health, and as 
such would be correctly described as high fire severity. 

Burn severity incorporates both short- and long-term post­
fire effects on the local and regional environment. Burn 
severity is defined by the degree to which an ecosystem 
has changed owing to the fire (Morgan et al. 2001; Key 
and Benson 2002; National Wildfire Coordinating Group 
2005). Vegetation influences burn severity as biomass pro­
duction often exceeds decomposition and some plants are 
specifically adapted to the characteristics of fires that com­
monly burn in these systems (Key 2005) (Fig. I). Several 
aspects of burn severity can be quantified, but burn sever­
ity cannot be expressed as a single quantitative measure 
that relates to all resource impacts (DeBano et al. 1998; 
Robichaud et al. 2000). Relative magnitudes of burn sever­
ity are often expressed in terms of post-fire appearance of 
vegetation, litter, and soil. However, it is easier to measure 
what remains following fire than it is to know what was there 
before the fire. Although the physical manifestations ofburn 
severity vary continuously, for practicality burn severity is 
often broadly defined and partitioned into discrete classes 
ranging from low (less severe) to high (more severe). Burn 
severity is typically assessed after a fire by measuring soil 
characteristics (char depth, organic matter loss, altered infil­
tration, and color) (Ryan and Noste 1985; DeBano et al. 1998; 
Neary etal. 1999), and aboveground vegetation consumption, 
mortality, scorch, and recovery (Morgan et al. 2001). Burn 
severity serves as a baseline with which other data layers may 
be integrated. 

Severe burns have long-lasting ecological effects because 
they alter belowground processes (hydrologic, biogeochem­
ical, microbial), which are essential to the health and sus­
tainability of aboveground systems (Neary et al. 1999). 
Long-term ecological changes can potentially result from 
severe fires that remove aboveground overstory vegetation, 
even if impacts to belowground processes are minimal. 
Post-fire weather conditions can also influence severity, in 
particular when looking at vegetation change through time in 
relation to severity (Key 2005). Remotely sensed measures of 
burn severity may reflect inter-annual phenological change of 
vegetation, as well as the interaction of longer-term climate 
patterns such as drought. Image acquisition date, in relation 
to time of field data collection and time since fire, may be 
more important than type of imagery or index used to com­
pare severity measures. Hudak et al. (2004) attributed low 



- -
Remote sensing of active fire and post-fire effects Int. J. Wildland Fire 323 

CA MT AI< 

Fig. 1. Low, moderate, and high 'burn severity' sites in California (CA) chaparral, Montana (MT) mixed-conifer forests, and Alaska (AK) 
black spruce forests. Burn severity was classified via consistent visual assessment ofground and canopy fire effects. 

correlations between field and remotely sensed measures of 
bum severity to post-fire wind and precipitation events that 
may have transported ash and soil off-site following fire in 
chaparral systems in southern California. 

Bum severity is not a direct measure, but a judgement that 
changes based on the context. It is likely that severity may 
vary depending on the issue or resource being addressed (e.g. 
vegetation mortality, soil erosion, soil nutrition), leading Jain 
et al. (2004) to propose abandoning the categorical descrip­
tions of low, moderate, and high severity, commonly used in 
the ecological and remote sensing literature. Burn severity 
classifications are often driven by objectives. For example, 
bum severity mapping is an important part of the analysis of 
US BAER teams including emergency treatment specifica­
tions and identification ofpotential deleterious effects. Bum 
severity mapping is used in post-fire project planning and 
monitoring, by researchers exploring relationships between 
pre-, during, and post-fire characteristics and response, and, 
in some cases, as evidence in legal debates. Considerable 
confusion surrounds definitions and interpretations of bum 

severity. However, these terms are useful descriptors, which 
are deeply entrenched in the nomenclature of fire managers 
and rehabilitation teams to describe post-wildfire effects in 
the USA. Thus wholesale abandonment is neither possible 
at this stage, nor advisable given the diverse array of users 
employing these descriptors. 

In the fire-behavior and fire-effects modelling commu­
nities, the terms 'first-order' and 'second-order' fire effects 
are often used, although these terms do not directly corre­
spond to the descriptors of fire intensity, fire severity, and 
burn severity. First-order fire effects include the direct and 
immediate fire effects on the environmental parameter of 
interest. First-order fire effects such as plant injury and death, 
fuel consumption, and smoke production are the direct result 
of the combustion process and, as such, are best described 
as active fire characteristics. Second-order fire effects result 
from the indirect effects of fire and other post-fire interac­
tions such as weather and, as such, are best described as 
post-fire effects. Some important second-order fire effects are 
smoke dispersion, erosion, and vegetation succession, which 
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may be evident immediately to many decades after a fire 
(Reinhardt et al. 2001). To non-fire modellers, this jargon 
can be confusing as these terms do not implicitly describe 
a temporal dimension, but rather suggest relative degrees of 
severity within a given parameter (e.g. degrees or 'orders' of 
soil char or biomass combustion within an area). Therefore, 
to assist in separating the different remote sensing studies 
that have been described as quantifying fire intensity, fire 
severity, and bum severity, the present paper will henceforth 
refer to these fire descriptors as either 'active fire charac­
teristics' or 'post-fire effects'. The active fire characteristics 
include 'immediate' variables that can only be measured dur­
ing the fire's combustion (whether flaming or smouldering), 
whereas post-fire effects include short- and long-term effects 
that impact the environment following the passage ofthe fire. 
Following a brief description of the available satellite sensor 
systems, this paper will provide a review of how remotely 
sensed imagery has been used to monitor and evaluate these 
fire descriptors. 

Remote sensing instruments and platforms 

Many different sensor platforms and instruments have been 
used to remotely map and monitor active fire characteris­
tics and post-fire effects (Table 1). In terms of the remote 
sensing ofactive fire characteristics and post-fire effects, we 
can divide the available sensor systems into passive or active 
and then further into aerial or satellite sensors. The most com­
monly applied types ofactive (i.e. rather than passive) remote 
sensing systems used to evaluate fire-related information are 
light detection and ranging (lidar) systems. These provide 
information on the elevation (and thus relative height) of a 
surface by measuring the time taken for a pulse of laser light 
to journey between a sensor and a surface. Lidar systems 
are predominately aerial-based and have been widely used 
to characterize individual tree and stand-level canopy struc­
ture (e.g. Lefsky et al. 1999,2005; Means et al. 1999,2000; 
Falkowski et al. 2006; Hudak et al. 2006), with limited stud­
ies directly evaluating fire fuels information (Seielstad and 
Queen 2003). 

The majority of remote sensing systems that have been 
used to infer active and post-fire characteristics have been 
passive sensors measuring the reflection or emission ofelec­
tromagnetic radiation from surfaces. Multispectral airborne 
and satellite sensors use radiometers that are sensitive to nar­
row bandwidths (bands) of the electromagnetic spectrum. 
For example, the Landsat Thematic Mapper (TM) sensor 
has six bands that span visible to mid-infrared wavelengths, 
and a thermal band that is sensitive to the surface bright­
ness temperature. Like many satellite sensors, the Landsat 
TM bandwidths were selected in part to maximize sensitivity 
to the dominant factors controlling the spectral reflectance 
properties of green vegetation. 

The utilization ofaerial or satellite sensors depends greatly 
on the intended application. The data quality issues of most 

L. 8. Lentile et al. 

satellite sensor imagery are widely known and several soft­
ware packages exist that can assist in their analysis. In 
contrast, aerial systems add a level of complexity, with most 
images needing 'fixes' to correct for the pitch, roll, and yaw 
of the aircraft. The advantages of aerial acquisitions are that 
imagery with very high spatial resolutions ( <0.5 m per pixel) 
can be acquired. More importantly, aerial systems have the 
potential to allow a 'rapid response' system to be imple­
mented. Given flight clearance, most aerial systems can fly on 
demand and thus characterize specific fire-related processes 
in a timely manner. There is a clear trade-off when comparing 
aerial and sensor acquisitions. Although the user is restricted 
by the imagery having both a specific pixel size and the sen­
sor flying at specific times ofday (and night), the sensor will 
always acquire the data even when aerial acquisitions are not 
permitted. 

Remote assessment of active fire characteristics 

Numerous measures have been applied to describe active 
fire characteristics within both the remote sensing and fire 
ecology literature (Table 2). The remote assessment of active 
fire characteristics can, however, be grouped into two main 
application branches: 

1. 	 The detection of actively burning areas using a combina­
tion of optical and thermal imagery; and 

2. 	The use of thermal imagery (airborne and satellite) to 
estimate the energy radiated from the fire as it bums. 

Detecting and counting active fires 

The accurate identification of fire events has been recognized 
by international research organizations, such as the Interna­
tional Geosphere and Biosphere program (IGBP), to be cru­
cial in the development ofa broader understanding ofhow fire 
extent and frequency impact global environmental processes 
(Giglio et al. 1999; Ichokuet al. 2003). Actively burning fires 
can be detected using thermal infrared bands (3.6-12(..Lm 
range) from coarse spatial resolution sensors such as the 
Advanced Very High Resolution Radiometer (AVHRR), the 
Along Track Scanning Radiometer (ATSR), or the Moderate 
Resolution Imaging Spectroradiometer (MODIS). Thermal 
emissive power from fires is orders ofmagnitude more intense 
than from the surrounding background. Such high contrast 
allows active fires to be reliably detected even when the fire 
covers small fractions (for example <0.01%, or 1ha of a 
1 km2 area) of the pixel (Robinson 1991). Numerous algo­
rithms for active fire detection have been developed (e.g. 
Kaufman et al. 1990; Justice et al. 1993, 1996; Flasse and 
Ceccato 1996; Pozo et al. 1997; Fraser et al. 2000; Seielstad 
et al. 2002; Dennison 2006; Dennison et al. 2006), and prior 
reviews of several of these methods have been presented by 
Li et al. (2001) and Ichoku et al. (2003). 

Broad-scale fire effects have been inferred from active fire 
images (Pozo et al. 1997; Roy et al. 1999; Fraser et al. 2000; 
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Table 2. Selected examples ofmeasures of active fire characteristics 

Characteristic description 

Flame length and height 

Fire duration 

Fire temperature 

Integrated temperature with time 

Rate of spread 

Direct pyrogenic emissions 

Fuel combusted 

Fire energy output 

Type of measure 

Heat-sensitive objects 
Direct observation 
Video 
Thermocouples 

Heat-sensitive paint or ceramics 
Thermocouples 
Thermal infrared cameras and imagery 
Thermocouples 

Thermocouples 
Visual records, stop watches 
Video 
Gas analyzers 
Fourier transform infrared spectroscopy 

Forest fuel and duff combustion 
In situ fire fuel sampling 
Change in laser profiling data 
Fire radiative power/energy 

Fire line intensity 

Fire radiative power/energy 

Reference examples 

Hely et al. (2003) 

Stocks et al. (\996) 


McNaughton et al. (1998) 

Smith et al. (2005b) 

Hely et al. (2003) 

McNaughton et al. (1998) 

Riggan et at. (2004) 

McNaughton et al. (1998) 

Smith et al. (2005b) 

Smith et al. (2005b) 

Stocks et al. (\996) 


Andreae et al. (1996) 

Yokelson et al. (2003) 

Yokelson et al. (\996) 

Oltmar and Sandberg (2003) 

Smith et al. (2005a) 

nJa 
Kaufman et al. (1998) 

Wooster (2002) 

Byram (1959) 

Trollope et al. (1996) 

Smith and Wooster (2005) 

Kaufinan et al. (1998) 

Wooster et al. (2003,2005) 

Roberts et al. (2005) 

Li et al. 2000a, 2000b). Pozo et al. (1997) applied a technique 
in south-eastern Spain in which the total area burned was cal­
culated by measuring the total number of active fire pixels 
over the period of a fire event. A major limitation of such 
methods is that they only identify pixels containing active 
fires when the satellite has passed overhead. The limited 
temporal coverage of most satellite sensors (e.g. Landsat 5 
acquisitions occur approximately once every 16 days) likely 
results in major errors of omission, which are magnified by 
the effects of cloud cover (Pereira and Setzer 1996; Fraser 
et al. 2000). Such limitations have been addressed by incor­
porating active fire pixel detection techniques with methods 
employing spectral indices to detect the area burned in either 
neighboring pixels or the same pixels days after the active 
fire (Barbosa et al. 1999a, 1999b; Roy et al. 1999; Fraser 
et al. 2000). Fraser et al. (2000) developed the automated 
Hotspot And NDVI Differencing Synergy (HANDS) tech­
nique for use in boreal forest environments. The HANDS 
technique combined the simple active-fire pixel method with 
a post-fire burned area mapping technique utilizing pre­
sumed post-fire decrease in surface near-infrared reflectance. 
The relationship between burned areas from HANDS and 
Landsat TM has also been reported over a wide range of 
boreal fires in Canada (Fraser et al. 2004). Although these 
hotspot-based techniques have been widely applied to data 
acquired from the mid-infrared channel (3.55-3.93 !-Lm) of 

the AVHRR sensor (Kaufman et al. 1990; Justice et al. 1996; 
Randriambelo et al. 1998; Fraser et al. 2000), the availability 
of more thermal channels from the MODIS sensor increases 
the potential for such techniques (Kaufman et al. 1998; 
Justice et al. 2002). An added advantage of MODIS is that 
it is now available on two satellites allowing 2-4 daily (night 
and day) image acquisitions. Considerable research is ongo­
ing to develop applications of the freely available MODIS 
products for detecting active fires and burned area. 

Estimating the energy radiated by a fire 

The energy produced by a fire is lost to the environment 
through a combination of conduction, convection, and radia­
tion (Kaufman et al. 1998). Thermal infrared remote sensing 
research has focused on inferring information from the 
radiative component, as the convective and conductive com­
ponents are difficult to directly quantify. The earliest research 
and development into using remote sensing to analyze the 
energy radiated by fires was performed in the late 1960s by 
the Fire Laboratory in Missoula, where a US Department of 
Defense sensor was modified and tested for fire detection 
(Wilson et al. 1971). Subsequent research has demonstrated 
that thermal infrared remote sensing data can provide a use­
ful measure of the rate of energy released from fire, termed 
the fire radiative power (FRP) (Kaufman et al. 1998; Wooster 
2002; Wooster et al. 2003, 2005; Butler et al. 2004; Riggan 
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et al. 2004; Ichoku and Kaufman 2005; Roberts et al. 2005; 
Smith and Wooster 2005). Simply stated, this method relies 
on the assumption that the amount of energy produced by 
combusting a quantity ofmass X is half that emitted by burn­
ing a quantity ofthe same material ofmass 2X. Assuming that 
the proportions of energy emitted as conductive, convective, 
and radiative are constant, the measure ofthe radiative energy 
released from burning biomass is indicative of the quantity 
of biomass combusted. If the combustion efficiency of the 
biomass is known, (as established through burn experiments), 
then the biomass burned to produce a measured quantity of 
heat can be calculated (Wooster 2002; Wooster et al. 2005). 

FRP has been derived from spectral measurements made 
by the MODIS sensor, and is directly related to the rate of 
fuel combusted (Kaufman et al. 1998; Wooster et al. 2003). 
FRP for a given fire pixel from the MODIS 3.9)..Lm band is 
defined as (Wooster et al. 2003): 

FRP = Asamp[1.89 x 107(LMIR,f - LMIR,bg)] x 10-3, (1) 

where FRP is in kW; LMIR,f and LMIR,bg denote the radiance 
recorded in the MODIS mid-infrared (MIR; 3.9 )..Lm) channel 
(W/m2/sr/)..Lm) at the fire and background non-fire pixels, 
respectively; Asamp is the MODIS ground sample area at the 
relevant scan angle of the observation. The middle infrared 
region of the electromagnetic spectrum is particularly suited 
to the FRP method, because the radiative energy component 
as given by the Planck function for temperatures consistent 
with wildfires (i.e. 1000-2000 K) is approximately ten times 
greater than the emittance of the Earth's ambient surface in 
this wavelength region (Wooster et al. 2005). 

The integration ofFRP over the lifetime ofthe fire provides 
a means to calculate the Fire Radiative Energy (FRE), which 
is the total energy radiated by the fire (i.e. the area under the 
FRP with time curve). FRE has been experimentally demon­
strated to be directly proportional to the total amount of fuel 
combusted (Kaufman et al. 1998; Wooster 2002; Roberts 
et al. 2005; Wooster et al. 2005). The underlying assump­
tion of the FRP method is that if sufficient observations are 
made during the fire, it should be possible to well character­
ize the FRP with time curve (e.g. see Roberts et al. 2005). 
Remote instantaneous measures of FRP can be produced 
using the MODIS 'active fire product'. Apart from this prod­
uct (i.e. MODI4), other sensor systems are being evaluated 
to characterize both FRP and FRE measures from wild­
fires. Wooster et al. (2003) used the Bi-directional InfraRed 
Detection (BIRD) sensor to measure FRE from Australian 
fires; Roberts et al. (2005) measured FRP with the Spin­
ning Enhanced Visible and Infrared Imager (SEVIRI), and 
Wooster et al. (2005) used 4-km spatial-resolution imagery 
from the Geostationary Operational Environmental Satellite 
(GO ES-8) sensor to detect MIR fire pixels. Although MO DIS 
affords a temporal resolution of>2 images per day, via both 
the TERRA and AQUA satellites, this temporal sampling 
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interval is only sufficient for a 'snap-shot' estimate of FRP. 
In contrast, research with both aerial systems (e.g. Riggan 
et al. 2004) and the geo-stationary SEVIRI satellite sen­
sor (Roberts et al. 2005) have allowed near-continuous FRP 
measurements. 

FRP data from MODIS were recently used to compare 
energy radiated from boreal forest fires in Russia and in 
North America (Wooster and Zhang 2004). The Russian fires 
radiated considerably less energy and subsequently released 
fewer emissions than American fires, owing in part to a differ­
ence in dominant fire type. Fires in Russian boreal forests are 
typically driven by surface fuels and burn less fuel per unit 
area, in contrast with the more intense crown fires that burn 
more fuel per unit area in North America. Mottram et al. 
(2005) supported these findings, by demonstrating that the 
observed FRP differences were not due to associated sensor 
effects. In a further application of FRP, Smith and Wooster 
(2005), in a study in African savannas, demonstrated that the 
FRP of backing fires was an order of magnitude lower than 
that observed in heading fires, a finding consistent with field 
measures of fire-line intensity (Troll ope et al. 1996). There­
fore, FRP could potentially be used to remotely discern the 
fire type that burned an area. Additionally, as the conduc­
tive component of the energy might be expected to impact 
post-fire processes, more research is needed to understand 
the relationships between FRP and impacts on soil, forest 
floor, and vegetation recovery. 

Remote assessment of post-fire effects 

The assessment of short- and long-term fire effects on local, 
regional, and global processes has been conducted using a 
wide range of in situ and remote methods (Table 3). The 
application ofremotely sensed imagery to monitor and assess 
the impacts of fire on local and regional environments can 
be broadly divided into: 

I. Burned area and perimeter methods; and 
2. Methods that assess a surface change (cover, fuel, etc.) 

caused by the fire. 

Burned areas, fire perimeters, and spatial heterogeneity 

The simplest and most common remote measure of post­
fire effects is a map of the area burned. The raster nature of 
digital imagery naturally lends itself to burn area mapping. 
A fire perimeter map is a vector representation of the burn 
area boundary that can be rendered digitally from remotely 
sensed imagery or by moving along the burn area bound­
ary on the ground with a global positioning system (GPS). 
Reliance on overhead imagery is increasing as it offers a 
bird's-eye view of burned areas and therefore has a decided 
advantage over field fire perimeter maps, which often fail 
to capture the heterogeneity and patchiness of fires and fire 
effects. Yet field fire perimeter maps will remain important 
not only for validation purposes, but when the atmosphere 
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Table 3. 

Characteristic description 

Char and ash cover 

Surface temperature changes 

Surface reflectance changes 

Area burned and fire perimeters 

Vegetation consumption 

Vegetation mortality 

Vegetation recovery 

Canopy scorch 

Soil charring 

Soil water repellency 

Atmospheric chemistry changes 

is too cloudy or smoky (a problem minimized using infrared 
imagery) to obtain useable imagery, and when the remotely 
sensed data is not available when needed. 'Real-time' data 
acquisition, however useful to map burned areas, is com­
monly constrained by logistical and economic factors. More 
thorough reviews of the comparatively large body of burn 
area mapping via remote sensing literature have already been 
accomplished (e.g. Barbosa et al. 1999b; Pereira 2003), so 
here we will only note a few key research papers and previous 
reviews. 

Remote assessment of burned areas has been conducted 
using a wide variety of aerial and satellite sensors. Since 
the 1980s, the majority of techniques have been devel­
oped for data acquired from the AVHRR sensor, and as 
such were restricted to a limited number of reflectance and 
thermal bands (Flannigan and Yonder Haar 1986; Kaufman 
et al. 1990; Setzer and Pereira 1991; Kasischke and French 
1995; Razafimpanilo et al. 1995; Fernandez et al. 1997; 
Randriambelo et al. 1998; Barbosa et al. 1999a, 1999b; 
Fraser et al. 2000; AI-Rawi et al. 2001; Fuller and Fulk 2001; 
Nielsen et al. 2002). Although data from the AVHRR sensor 
is restricted by a relatively large pixel size (i.e. 1.1 km), global 
data have been obtained from a series of different satellites 
for over 20 years, and importantly, these data can be obtained 
at no cost. These data have enabled the long-term monitoring 
oflarge-scale fires in remote and isolated areas (e.g. African 

savannas and boreal regions). In more recent years, other 
sensors have been developed that provide a greater selection 
of bands. 

These sensors, which have also been used to evalu­
ate burned area, include the Advanced Long Track Scan­
ning Radiometer (Eva and Lambin 1998a; Smith et al. 
2002), MODIS (Roy et al. 2005), SPOT-VEGETATION 
(Stroppiana et al. 2002; Silva et al. 2003; Zhang et al. 2003), 
and Landsat (Salvador et al. 2000; Russell-Smith et al. 2003; 
Holden et al. 2005). Several regional-scale products also 
exist that apply tailor-made algorithms to various satellite 
sensors (i.e. GBA2000, GLOBSCAR, the MODIS burned 
area product, etc.). Essentially, until recently (e.g. MODIS 
on TERRA and AQUA), there was not a space-based system 
design specifically to 'look' at terrestrial Earth. Previous to 
MODIS, most other sensor systems (e.g. AVHRR - an atmo­
spheric mission), were opportunistic exploitations of band 
ratios for terrestrial products (e.g. NDVI). 

The vast majority of satellite-based burned area map­
ping studies use information on differences in spectral or 
thermal properties of a land surface before and after a fire 
(e.g. Eva and Lambin 1998a, 1998b; Barbosa et al. 1999a, 
1999b; Fraser et al. 2000; Fuller and Fulk 2001; Nielsen 
et al. 2002). Novel spectral indices including the Burned 
Area Index (Chuvieco et al. 2002), a thermal variation of 
the Global Environmental Monitoring Index (Pereira 1999), 

Selected examples of measures of post-fire effects 
VIS-MIR, visible, mid-infrared 

How measured 

In situ measurements 
Aerial photographs 
VIS-MIR sensor imagery 
In situ measurements 
Thermal infrared imagery 
In situ measurements 
VIS-MIR sensor imagery 
In situ records 
VIS-MIR sensor imagery 
Field 
VIS-MIR sensor imagery 
Field 
VIS-MIR sensor imagery 
Field 

Changes in multi-date imagery 

Field 

In situ measurements 
Hyperspectral imagery 
In situ measurements 
Hyperspectral imagery 
Atmospheric sounders 

Reference examples 

Smith et al. (2005b) 

Smith and Hudak (2005) 

Landmann (2003) 

Trigg and Flasse (2000) 

Kaufman et al. (1998) 

Trigg and Flasse (2000) 

Fuller and Fulk (200 I) 

Eva and Lambin (1998a) 

Pereira (1999) 

Lenihan etal. (1988); Cocke etal. (2005) 

Hall et al. (1980); Miller and Yool (2002) 

Wyant et al. (1986); Cocke et al. (2005) 

Patterson and Yool (1998) 

Lyon and Stickney (1976); 

Anderson and Romme (1991); 
Turner et at. (1997); Lentile (2004) 

Henry and Hope (1998); 
Diaz-Delgado et al. (2003) 

Ryan and Reinhardt (1988); 
McHugh and Kolb (2003) 

DeBano et al. (1979); Lewis et at. (2006) 
Laes et al. (2004) 
Lewis et al. (2006); Doerr et al. (2000) 

Spichtinger et al. (200 I) 
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different thermal variations of the VI-3 index (Barbosa et al. 
1999a, 1999b), thermally enhanced variations of common 
indices (Holden et al. 2005), and the Mid-infrared Bispectral 
Index (Trigg and Flasse 2001) have recently been developed 
and tested. A limited number ofstudies have also investigated 
the utility ofprincipal components analysis (Richards and Jia 
1999; Garcia-Haro et al. 2001; Hudak and Brockett 2004), 
texture analysis (Smith et al. 2002; Hann et al. 2003), spec­
tral mixture analysis (Cochrane and Souza 1998; Sa et al. 
2003), and neural networks (AI-Rawi et al. 2001). Although 
most studies do compare a suite of several methods within 
their particular study areas (e.g. Pereira 1999; Chuvieco et al. 
2002; Holden et al. 2005), there still exists a need to assess 
how such methods work over the wide range of fire-affected 
environments. 

Remotely sensed data have been used to retrospectively 
produce fire history, frequency, and perimeter information 
(Chuvieco and Congalton 1988; Salvador et al. 2000; Hudak 
and Brockett 2004; Holden et al. 2005), although the data 
availability can limit such approaches. Such data are ofimme­
diate use to land managers in the United States as a potential 
surrogate for fire perimeter data, 'digital fire polygon his­
tories' or 'fire atlases', which are typically collated after 
the fire (sometimes weeks, months or years later) using a 
combination of paper records, aerial photographs, and local 
experience (Morgan et al. 2001). Land management agen­
cies in the United States including the National Park Service 
(NPS) and the United States Forest Service (USFS) have 
begun developing atlases ofburned area (or fire atlases) from 
satellite imagery, field maps, and aerial photographs as part 
of fire management efforts. As yet, no standardized protocol 
has been developed for building digital fire perimeter lay­
ers, which may lead to questionable quality, accuracy, and 
reproducibility of atlases developed from these data sources 
(Morgan et al. 2001). 

Fire atlases provide perspectives on the location and spa­
tial distribution of fires on the landscape. Limitations include 
the relative lack of details on the spatial variation within 
fires, as well as the changes in mapping standards, methods, 
and recording over time (Morgan et al. 2001). The over­
all accuracy is largely unknown. Remote sensing has great 
potential to supplement existing information on fire regimes 
by enabling researchers to acquire data at broad spatial scales, 
in areas where fire atlases do not exist, and in previously inac­
cessible areas. However only '"'-'30 years of satellite images 
and '"'-'70 years of aerial photographs are available now, and 
many people want to characterize fire regimes over much 
longer time intervals, and across areas exhibiting a range of 
land use practices. 

High-to-moderate spatial resolution (pixel sizes between 
1 and 30m) satellite sensors, such as IKONOS, SPOT, and 
Landsat, enable the assessment ofthe degree ofheterogeneity 
within large and remote fires. Turner et at. (1994) used Land­
sat TM imagery to explore the effects of fire on landscape 
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heterogeneity following the 1988 Yellowstone fires. Smaller 
patches « 1250 ha) were often more heterogeneous in fire 
effects, whereas larger patches were more homogeneous in 
effects (Turner et al. 1994). The heterogeneity of fire effects 
in patches of various size, shape, and distance from living 
vegetation differentially impact species and influence suc­
cessional trajectories (Picket and White 1985; Turner et al. 
1999). The fine-grained pattern of living and dead vegeta­
tion in patches ranging from square meters to thousands of 
hectares has major implications for recovery processes. Fire 
effects on soil and vegetation recovery rates may vary accord­
ing to the specific interactions between fire behavior and 
available fuels (Ryan and Noste 1985; Agee 1993; Tumer 
and Romme 1994; DeBano et al. 1998). Remote sensing has 
great potential for studying fine-scale heterogeneity in fire 
effects across large areas; such studies could help us under­
stand the causes and consequences of spatial variability in 
active fire characteristics and post-fire effects. 

Remotely-sensed estimates of post-fire heterogeneity and 
spatial arrangement of burned patches have also been used 
to explore causal relationships (Rollins et at. 2001; Ruiz­
Gallardo et al. 2004), to document rates of recovery (Turner 
et al. 1994; Lentile 2004), and to prioritize areas for fuels 
reduction (Hardy et al. 1998, 1999) and post-fire rehabilita­
tion (Parsons 2003). Variation in fire effects due to weather, 
topography, and vegetation type and structure occurs even 
within large fires (Eberhardt and Woodard 1987; Turner et al. 
1994), and heterogeneous or 'mixed' effects occur at some 
scale in all fires. Remotely sensed data allow researchers to 
conduct multi-scale and spatially explicit analyses of fires 
relative to topography, pre-fire vegetation structure or com­
position, and land use. Rollins et al. (2001) found that the area 
burned in 20th century fires in the Gila! Aldo Leopold Wilder­
ness Complex (New Mexico) and the Selway-Bitterroot 
Wildemess areas (Idaho and Montana) was influenced by 
elevation, drought, and land use. Lentile (2004) found that 
pre-fire vegetation as influenced by stand history and abi­
otic gradients was the best predictor of post-fire effects and 
subsequent vegetation recovery in ponderosa pine forests of 
the South Dakota Black Hills. Turner et al. (1997) found 
significant effects of burn severity on most biotic responses 
including seedling density and cover following the Yellow­
stone fires. However, geographic location, particularly as 
it related to broad-scale patterns of serotiny in lodgepole 
pine (Pinus contorta), was the most important variable influ­
encing forest reestablishment and pathways of succession 
(Turner et al. 1997). Post-fire tree regeneration is dependent 
on adequate seed dispersal and favorable microsite condi­
tions, which are in turn related to competitive interactions at 
fine scales, and landscape position (i.e. elevation, slope, and 
aspect) at broad scales (Turner et al. 1994, 1997; Chappell 
and Agee 1996). Identification of factors influencing vege­
tation dynamics at multiple spatial scales will improve our 
understanding of how post-fire environmental heterogeneity 
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relates to fuel accumulations and burn severity patterns in 
forested landscapes. 

Remote assessment ofsurface change 

The analysis ofpost-fire effects from satellite imagery is not 
a new concept. Hall et al. (1980) classified multi-temporal 
Landsat Multi-spectral sensor data of tundra fires in north­
western Alaska into light, moderate, and severe fires as 
defined by the abundance of live post-fire vegetation. Over 
the next 20 years, others assessed the correlation of satellite 
data with different ground-based inferences of fire severity 
relating to vegetation consumption (Milne 1986; Miller and 
Yool 2002) and mortality (Patterson and Yool 1998). 

Although the majority of remote assessments of post-fire 
effects have employed moderate spatial-resolution imagery 
from the Landsat sensor (30m) (e.g. Fiorella and Ripple 
1993; Turner et al. 1994; Viedma et al. 1997), other sen­
sors such as SPOT XS (Henry and Hope 1998) and AVIRIS 
(Riafio et al. 2002) have also been used. Furthermore, the use 
oftemporal series (Henry and Hope 1998; Kushla and Ripple 
1998; Diaz-Delgado et al. 2003) and transformations (Henry 
and Yoo12002) are widespread. A wide range ofremote sens­
ing approaches have been applied across a diversity of fire 
regimes and environments including temperate coniferous 
stands in Oregon (Fiorella and Ripple 1993), chaparral veg­
etation in California (Henry and Hope 1998; Riafio et al. 
2002), forested shrublands of southern Spain (Viedma et al. 
1997), and coniferous forests ofYellowstone National Park 
(Turner et al. 1994). 

The NDVI has been widely used to assess post-fire vegeta­
tion regrowth. This is appropriate as long as direct change in 
green vegetation cover is the main ecological process being 
measured. Several studies have applied NDVI and similar 
spectral indices to remotely assess post-fire effects (Fiorella 
and Ripple 1993; Henry and Hope 1998; Diaz-Delgado et al. 
2003). 

Significant developments in the spectral analysis of post­
fire effects were made by Ekstrand (1994), who used field 
data, aerial photographs, and Landsat bands 4 and 5 to assess 
the degree ofdefoliation in Norway spruce stands in Sweden 
following fire. White et al. (1996) used field data, post-fire 
aerial photographs, and Landsat data within a variety ofveg­
etation types in the Flathead National Forest and Glacier 
National Park, Montana, to compare remotely sensed mea­
sures of severity. However, these techniques in general do 
not relate actual spectral reflectance or brightness temper­
ature collected in situ to changes in radiance or thermal 
emittance as measured by the satellite sensor. In contrast, the 
development oftwo spectral indices, namely the mid-infrared 
bispectral index (MIRBI) for burned savanna surface assess­
ment (Trigg and Flasse 2001) and the NBR (Eqn 2) for 'bum 
severity' assessment of forested regions (Key and Benson 
2002; Brewer et al. 2005), incorporate information of the 
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spectral changes at the surface to infer post-fire effects. 

(2) 

where P4 and P7 are the surface spectral reflectances as mea­
sured in bands 4 (0.76-0.90 I-Lm) and 7 (2.08-2.35 I-Lm) ofthe 
Landsat Enhanced Thematic Mapper (ETM +) sensor. 

Through collection of the spectral reflectance of pre- and 
post-fire surfaces, both of these methods incorporate the 
observed decrease in spectral reflectance in the visible-mid­
infrared region with a corresponding increase in mid-infrared 
(2.2 I-Lm) reflectance. Although MIRBI was developed purely 
for burned area assessment, NBR and dNBR are widely being 
used to assess landscape-scale post-fire effects in the USA 
(Key and Benson 2002; van Wagtendonk et al. 2004; Brewer 
et al. 2005; Cocke et al. 2005) and in southern African savan­
nas (e.g. Roy et al. 2005; Smith et al. 2005b). The band ratio 
that is now commonly referred to as NBR was initially devel­
oped and used by Lopez-Garcia and Caselles (1991) using 
ratios ofLandsat bands 4 and 7 to map burned areas in Spain. 
In addition to measuring burned area, NBR is used to infer 
the degree of post-fire ecological change. 

van Wagtendonk et al. (2004) used the AVIRIS air­
borne hyperspectral sensor (a spectral instrument with 224 
bands over the visible to mid-infrared range) to demonstrate 
that the largest spectral decrease in visible-near infrared 
reflectance between pre-fire and post fire occurred at AVIRIS 
bands 47 (0.788I-Lm) and 60 (0.913l-Lm), whereas the largest 
spectral increase at mid-infrared wavelengths occurred at 
AVIRIS band 210 (2.370 I-Lm). This research suggested that 
an improved NBR index could be used if imagery were avail­
able with these wavelengths. In a similar fashion, Smith et al. 
(2005b) used ground-based spectroradiometer data in south­
emAfrican savannas to evaluate which Landsat spectral band 
ratios could best characterize fire severity, as defined by the 
duration of the fire at a point. Smith et al. (2005b) demon­
strated that simple ratios ofthe blue, green, or red bands with 
the Landsdat SWIR (band 7) band each outperformed NBR. 
Therefore, NBR may not be the optimal remote indicator of 
post-fire effects, particularly in grasslands and shrublands. 
Further research to evaluate other approaches is warranted. 

Others have sought to develop spectrally-derived post-fire 
effect metrics based on the spectral reflectance of post­
fire surfaces. The spectral reflectance of such surfaces can 
provide important insights into the degree of combustion 
completeness within the fire (McNaughton et al. 1998; 
Landmann 2003). Incomplete combustion produces residual 
carbon residue termed char or black ash (Robinson 1991; 
Trigg and Flasse 2000; Smith et al. 2005a), whereas complete 
combustion produces incombustible mineral residue termed 
white ash (Landmann 2003; Smith et al. 2005b). The quantity 
ofwhite mineral ash produced per unit area could therefore be 
considered a measure of fuel consumption (Landmann 2003; 
Roy and Landmann 2005; Smith and Hudak 2005). 
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As stated earlier, in most environments and fire regimes, 
fires result in a net decrease in visible and near-infrared 
reflectance due to deposition of black char onto the surface 
(Robinson 1991; Eva and Lambin 1998a). This assumption 
is not always valid as complete combustion of large woody 
debris or large quantities of other fuels can produce patches 
of white mineral ash (i.e. silica), which is highly reflective 
(i.e. >50%) between 0.3 and 2.5 ~m (Landmann 2003; Roy 
and Landmann 2005; Smith and Hudak 2005; Smith et al. 
2005b). In savannas, the post-fire surface reflectance typi­
cally decreases initially ( <20 min) as black ash replaces green 
vegetation, then increases when fires of long duration pro­
duce increasing quantities of white ash (Roy and Landmann 
2005; Smith et al. 2005b). Smith et al. (2005b) demonstrated 
that in order for remotely sensed imagery to detect the spatial 
density of common white ash patches produced in wood­
land savanna fires, imagery with pixel sizes less than 5 mare 
needed and as such, Landsat or imagery of similar spatial 
resolution (i.e. 15-60 m) are not suitable. Such a fine spatial 
resolution (i.e. 1-5 m) to detect patches of grey ash (which 
is simply a mixture of black and white ash) may be suitable 
in forested environments, where owing to higher fuel loads, 
the potential white ash patch density might be more signifi­
cant (Smith and Hudak 2005; Smith et al. 2005b). Therefore, 
in addition to remote sensing producing coarse-scale mea­
sures of area burned, very high spatial resolution imagery 
can potentially allow the remote assessment ofmore localized 
post-fire effects such as soil water repellency and vegetation 
mortality. 

Field assessment of active fire and post-fire effects 

The assessment of active fire and post-fire effects using 
remotely sensed data relies on a thorough understanding of 
what precise measure or process is being recorded on the 
ground. There are few, if any, consistent, quantifiable indica­
tors of active and post-fire effects that are linked to remotely 
sensed data. Even ground-based indicators offire effects are 
largely qualitative. Most studies have not incorporated scales 
of spatial variability in fire effects, thus limiting inferences 
that can be drawn from remotely sensed imagery. A lack of 
spatial context limits the confidence that can be placed in data 
of a particular resolution. Remote sensing has the potential 
to greatly increase the amount of information available to 
researchers and managers; however, it is still challenging to 
adequately characterize enough ground reference locations 
across the full range of variability in fire effects. Traditional 
study designs are typically too coarse to account for the vary­
ing scales ofspatial complexity offire effects. Field sampling 
to verify and characterize remotely sensed data must include 
sampling across the full range of variability in topography 
and vegetation structure and composition, in a time frame 
that will allow comparison between data sets. Quantification 
of the spatial variability of active and post-fire effects will 
provide a better understanding ofthe relevant scales at which 
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research questions can be addressed with remotely sensed 
data, and facilitate more effective and accurate application 
and interpretation of these data. 

Field measures ofactive fire effects 

Field measures ofactive fire characteristics have traditionally 
included in situ measures such as fire-line intensity, flame 
length, and rate of spread of the fire front (Byram 1959; 
Albini 1976; Alexander 1982; Trollope and Potgieter 1985; 
Trollope et al. 1996), whereas more recent techniques have 
involved monitoring the temperature generated by the fire 
through the use of thermal infrared cameras (e.g. Riggan 
et af. 2004), spectroradiometers (Wooster 2002), heat sensi­
tive crayons and paints (Hely et af. 2003), and thermocouples 
(Stronach and McNaughton 1989; Stocks et al. 1996; Ventura 
et al. 1998; Molina and Llinares 2001; Smith et al. 2005b). 
In addition to instruments estimating fire thermal character­
istics, other active fire characteristics can include assessment 
of trace gases within smoke plumes (Yokelson et al. 1996, 
2003), which have important implications for regional air 
quality (Hardy et al. 2001), and in situ assessment of fuel 
combusted (Trollope et al. 1996; Smith et af. 2005a). 

The assessment ofsuch parameters ideally requires unfet­
tered access and timely (i.e. rapid response) measurements, 
both ofwhich are often impractical during wildfires owing to 
safety concerns. Remote locations ofmany fires make acces­
sibility difficult. The application of remotely sensed optical 
and thermal imagery over large fires is a very important and 
necessary tool from the standpoint of both researchers and 
land resource managers. 

Field measures ofpost-fire effects 

Field-based measures offire effects have included an assess­
ment of the change in soil color (Wells et al. 1979; Ryan 
and Noste 1985; DeBano et al. 1998; Neary et al. 1999); 
soil infiltration and hydrophobicity (DeBano 1981; Neary 
et al. 2004; Lewis et af. 2006); change in vegetation char 
and ash cover (Landmann 2003; Smith 2004) and amount of 
canopy scorch (Ryan and Reinhardt 1988; McHugh and Kolb 
2003); tree scarring (Barrett et al. 1997; Grissino-Meyer and 
Swetnam 2000; Lentile et af. 2005), and organic fuel con­
sumption (Lenihan et al. 1988). In an attempt to integrate a 
variety of these different post-fire effect measures, Key and 
Benson (2006) developed the ground-based Composite Burn 
Index (CBI). The CBI is based on a visual assessment of 
the quantity of fuel consumed, the degree of soil charring, 
and the degree of vegetation rejuvenation (van Wagtendonk 
et al. 2004). CBI was designed as a field-based validation of 
the post-fire NBR spectral index. Fire effects on 30 x 30m 
sample plots in five strata (soils, understory vegetation, mid­
canopy, overstory, and dominant overstory vegetation) are 
evaluated individually and later combined for an overall plot­
level burn severity value. The CBI method is rapid but very 
subjective. 
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Management use of remote sensing fire effects products 

Remote sensing has the potential to provide data to address 
pre-, active, and post-fire characteristics over broad spatial 
scales and remote areas. However, the utility of such data is 
determined by temporal availability, spectral and spatial reso­
lution ofdata, ground-truthing, and accurate interpretation at 
appropriate scales. Additionally, integral to the advancement 
of remote sensing science is the quantification of variables 
that relate reflected or emitted radiation to ground and canopy 
combustion processes. 

'Severity classifications' and implications for recovery 

The occurrence of areas with similar fire environments, 
behaviors, and effects have led to the use of 'severity classes' 
within both the ecological and remote sensing literature 
(Ryan and Noste 1985; DeBano et al. 1998; Patterson and 
Yool 1998; Robichaud et al. 2000; Isaev et al. 2002; Diaz­
Delgado et al. 2003). Yet there is considerable variation 
in low, moderate, and high severity classifications across 
regions and vegetation types (Fig. 1). Additionally, such burn 
severity classes have been inconsistently characterized in 
the remote sensing literature (Table 4). Many studies have 
relied on Ryan and Noste's (1985) field characterization of 
post-fire effects and consistent visual assessment of ground 
and canopy fire effects (White et al. 1996; Ruiz-Gallardo 
et al. 2004). Ryan and Noste's (1985) classification pro­
vided a physical description for assessing the heat impact 
on overstory and understory vegetation, fuels, litter, and soils. 
This model has been particularly useful to classify remotely 
sensed data because the discriminating features are detectable 
from satellite data (White et al. 1996). However, in forested 
environments, remotely sensed burn severity maps are often 
highly correlated with fire effects on overstory vegetation and 
exhibit low correlations with ground and soil variables where 
the vegetation occludes the ground (Patterson and Yoo11998; 
Hudak et al. 2004). Satellite imagery integrates changes in 
all parts of the forest, illuminating areas of low canopy clo­
sure; thus, field assessment is necessary to verify which 
parts of the soil and vegetation strata are affected (White 
et al. 1996; Hudak et al. 2004; Cocke et al. 2005; Epting 
et al. 2005). 
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The degree of post-fire change typically increases with 
increasing vegetation mortality and proportion ofcharred soil 
and vegetation, and is linked with long duration of soil heat­
ing. For example, high burn severity classes are attributed 
to areas with high quantities of reddened soil and charred 
fuels and vegetation, but high burn severity may differen­
tially impact ecosystem function depending on the pre-fire 
environment and vegetation types. For example, high burn 
severity resulting in increased water repellency may be com­
mon in California chaparral systems, yet rare in Alaska black 
spruce (Picea mariana) forests owing to major differences in 
pre-fire soil and forest floor conditions, vegetation character­
istics, and the relative occurrence of hydrophobic conditions 
(Fig. 1). Fires ofall sizes will have some very localized effects 
that could be classified as high severity, and heterogeneous 
mosaics offire effects occur at some scale in all fires (Fig. 2). 
The scale and homogeneity of fire effects is important eco­
logically. Often, larger fires and large patches within fires are 
dominated by high severity components (Turner et al. 1994; 
Graham 2003). Hudak et al. (2004) suggested that high sever­
ity fires resulted in more spatially homogeneous fire effects 
on soil and vegetation than moderate or especially low sever­
ity fires, whereas Turner et al. (1994) found that large burns 
(~500-3700 ha) tended to have a greater percentage ofcrown 
fire and a smaller percentage of light surface burns. Such 
severely burned areas may be more vulnerable to invasive 
species and soil erosion and may not return to pre-fire con­
ditions for extended time periods. Patch size and the spatial 
mosaic of severity exert a strong influence on vegetation and 
nutrient recovery. Extensive areas of high burn severity may 
have fewer resprouting individuals or surviving trees to pro­
vide seeds (Turner et al. 1999). Unburned or lightly burned 
patches within high severity regions may provide seed sources 
to increase rates ofplant recovery. The post-fire environment 
may change greatly within 1 year, some aspects of which 
may be predictable, whereas others may be more driven by 
local and regional weather. Thus, depending on the timing 
and extensiveness of the field data collection effort, it is pos­
sible, for example via geostatistical kriging techniques, to 
infer ecological processes from remotely sensed landscape 
patterns of fire effects and use this information to guide 
post-fire planning decisions. 

Table 4. Selected examples of approaches that remotely assess degree of post-fire change 

Approach to divide classes ofpost-fire effects No. classes Reference 

No. fine branches remaining on woody plants 7 Diaz-Delgado et al. (2003) 
Complete and partial stand mortality 2 Isaev et al. (2002) 
Weighted carbon storage in different fuel components 3 Zhang et al. (2003); Conard et al. (2002); 

Conard and Ivanova (1997) 
USFS fire classification rules (cf. Cotrelll989) - degree of 4 Patterson and Yool (1998) 
canopy and soil organic matter consumption 

Fuel consumption and proportion of grey ash endmember 2 Landmann (2003) 
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(b) 
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Fig. 2. Landscape-scale heterogeneity following fires. (a) California, 
(b) Montana, and (c) Alaska. 

Current applications ofremote sensingjire 
effects products 

The USFS Remote Sensing Applications Center (RSAC) 
and the USGS EROS Data Center (EDC) provide satellite 

imagery and image-derived products for managing and mon­
itoring wildfires. RSAC produces Burned Area Reflectance 
Classification (BARC) maps for use by BAER teams to iden­
tify social, ecological, and economic values at risk. BARC 
products are based on dNBR values or, if pre-fire imagery 
is unavailable, then NBR values, from satellite imagery such 
as Landsat TM, Landsat Enhanced Thematic Mapper Plus 
(ETM+), SPOT, Multispectral (SPOT-Xi), and MODIS. 

BARC maps are made as soon as possible during a sig­
nificant wildfire event. These preliminary maps of post-fire 
condition are assessed and modified by BAER teams to aid 
in planning and implementing erosion mitigation in severely 
burned areas. BARC maps measure satellite reflectance and 
may be used by BAER teams to develop burn severity maps. 
BAER teams are assigned to measure and map severity based 
on ground and soil characteristics rather than canopy vege­
tation (Miller and Yool 2002; Parsons and Orlemann 2002; 
Lewis et al. 2006). However dNBR and NBR correlate more 
highly to vegetation attributes, especially those of dense 
upper canopy layers, rather than ground and soil attributes 
(Hudak et al. 2004). 

Post-fire maps may substantially vary depending on when 
and how burn severity is assessed and for what objectives 
(Fig. 3). In many cases, managers have abandoned traditional 
sketch maps based on ground and helicopter surveys and 
have become dependent on the Landsat sensor and its associ­
ated BARC products to provide short-term decision support. 
There are varying levels ofconfidence associated with remote 
sensing products, and even very experienced managers need 
better initial ground validation and longer-term monitoring 
protocols to build confidence in these products. In a compar­
ison offield validations ofBARC maps, Bobbe et al. (2003) 
found the dNBR to be no more accurate than NBR for indi­
cating immediate post-fire effects. Some BAER teams have 
opted to use a combination ofavailable imagery, existing geo­
graphic information system (GIS)-based maps oftopography 
and pre-fire forest condition, and local knowledge to guide 
post-fire assessments (Fig. 3). Severity assessments often fail 
to specifically identify whether vegetation, soil, or erosion 
potential was low, moderate, or high, but have nonetheless 
been used to guide management activities such as post-fire 
timber harvest and reforestation activities. Often those other 
management activities would be better served with dNBR­
based assessments using post-fire images taken I or 2 years 
post fire, accompanied by extensive ground-truthing (Cocke 
et al. 2005). 

Determining the scale appropriate for management deci­
sions may help to streamline approaches to post-fire reha­
bilitation. For example, it is often assumed that high burn 
severity classes are positively correlated with increasing soil 
water repellency (Doerr et al. 2000). Many studies have 
shown that pre-fire soil texture, the amount and depth oflit ­
ter cover, soil water, soil organic matter, and the temperature 
and residence time of the fire all affect the degree of soil 
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Fig. 3. (a) Pre-fire Landsat 7 image (7-4-3 false-color composite) acquired on 18 August 1999; (b) post-fire Landsat 
7 image (7-4-3 false-color composite) acquired on 14 September 2000; (c) bum severity map produced for the Jasper 
fire in the South Dakota Black Hills from images in (a) and (b) according to dNBR methods (Key and Benson 2006); 
(d) burn severity map produced by the BAER team for the Jasper fire using a single date post-fire Landsat image, 
geographic information system-based maps of topography and pre-fire forest condition, and field assessment. 

modification during fires and the resulting soil water repel­ is time-consuming, and protocols are not yet standardized 
lency (Giovannini and Lucchesi 1997; Doerr et al. 2000; for interpreting fire effects. Furthermore, data acquisition 
WondzeIl and King 2003). Laes et al. (2004) attempted is comparatively expensive and logistically chaIlenging, par­
to use airborne high spatial/spectral resolution (4 ml224 ticularly if accomplished via aircraft in an active fire zone. 
bands) hyperspectral imagery to identify surface water­ Further study is needed to learn whether such high spatial 
repeIlent soils over the Hayman fire in the summer of 2002. and/or spectral resolution is needed to capture soil microsite 
Hyperspectral imagery may have the potential to indirectly heterogeneity, or if the resolution of20 m SPOT-Xi (4 bands) 
detect soil water repellency via detection of an ash signal in or 30 m Landsat-TM (6 bands) imagery may be adequate 
the soil (Lewis et al. 2006). Processing of hyper spectral data for BAER teams to identify large areas at risk of erosion, 
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sedimentation, and landslide events. Rapid and defensible 
delineation of large, severely burned areas with high poten­
tial for erosion could reduce the time necessary for BAER 
teams to conduct evaluations, improve recommendations 
for treatment, and decrease the amount of money spent on 
rehabilitation projects. 

Remote sensors have the potential to be used for car­
bon budget investigations (Conard et al. 2002). Fires release 
carbon that is stored in trees, shrubs, and herbaceous 
vegetation, litter, duff, and even the soil if the fire is 
intense and long-lasting. Vegetation recovery draws car­
bon back in from the atmosphere. The dNBR technique 
is currently being applied by researchers around Yosemite 
National Park, CA, to estimate fire-use emissions and moni­
tor air quality. Other management applications of the dNBR 
include production of GIS-based fuel layers in Glacier 
National Park, MT, and Grand Teton National Park, WY, 
as well as identification of extreme fire risk zones and 
propensity for post-fire erosion and landslides around the 
Salmon-Challis National Forest in Idaho. For more informa­
tion, see http://www.nrmsc.usgs.gov/researchindbr.htm and 
http://giscenter.isu.edulresearch (verified 29 June 2006). 

Future directions of fire-related remote 
sensing research 

The influence offire spans a wide range oftemporal and spa­
tial scales, and the interpretation ofcausal factors, fire effects, 
and ecological responses is a challenge to both research and 
management. As outlined in the present review, current fire 
effects terminology is used inconsistently. However, simply 
classifying remotely sensed measures as either active or post­
fire characteristics is difficult as the effects of fires vary 
temporally and with topography and vegetation, and multiple 
current and new sources of remote sensing data continue to 
accrue. Challenges remain in how to infer active and post-fire 
characteristics using remotely sensed data. 

Challenges 

Landscape-level ecological effects o/fires 
are not well understood 

Predicting where on the landscape fires are likely to cause 
severe short- and long-term ecological effects and under­
standing why these effects vary are central questions in fire 
science and management. Remote sensing can help us to 
characterize the fuels, vegetation, topography, fire effects, 
and weather before, during, and after fires. Doing so is crit­
ical to understanding which factors and which interactions 
between them are most important in influencing immediate 
and long-term fire effects at local, regional, and global scales. 
For instance, low spatial resolution imagery (i.e. 0.25-1 km 
pixel size) can provide coarse-scale maps of area burned, 
whereas high spatial resolution imagery (i.e. 1-5 m pixel 
size) can help provide information on the fine-scale spatial 
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heterogeneity of post-fire effects (e.g. patches of white ash 
or soil char). For remotely measuring fuel combusted within 
a fire, an upper constraint can be produced by multiplying 
the mean fuel load with the broad measure of area burned, 
whereas detailed imagery can provide information on fine­
scale patchiness that is not resolved in the coarse-resolution 
imagery. The accuracy of estimates of biomass burned will 
likely be improved by incorporating data from higher spatial 
resolution imagery. 

Studies linking active fire characteristics, post-fire 
effects, and pre-fire stand conditions are limited 

Direct measurement of fire behavior is difficult. More 
work is needed in this area to inderstand the dynamics of the 
tightly interrelated factors ofactive fire characteristics, post­
fire effects, and pre-fire stand conditions. We need to expand 
remotely sensed systems that characterize real-time energy 
transfer, and, when possible, avoid attribution of retrospec­
tive causality. Mechanistic models based on an understanding 
of how energy transfer translates to fire effects and post-fire 
recovery are needed. For example, direct measurement offor­
est floor consumption and surface-to-canopy fire transition 
is of crucial value to forest managers for fire management 
planning. We lack data that connect current stand and vege­
tation condition to fire behavior and ecological response. In 
particular, we need improved techniques to detect post-fire 
effects on the surface where residual canopy density is high 
or where fire consumes only litter (Patterson and Yool 1998; 
Holden et al. 2005). In these fires, the integration of ground­
based and remote measures of active and post-fire effects is 
especially important. 

Remote sensing andfield assessments 
are poorly integrated 

The NBR and NDVI indices have been widely used to mea­
sure fire-induced vegetation loss. However, these indices and 
others should be tested against field data (e.g. canopy scorch, 
tree mortality, ground char, fuels consumption, ash cover) 
across a variety of vegetation biomes and fire regimes to 
determine where they are most useful and what they actually 
measure in terms ofpost-fire ecological effects. For example, 
further studies comparing these indices to field data, such as 
CBI, could help us understand whether values of post-fire 
ecological change arise from fire effects on canopy, under­
story vegetation, or soil. Thoughtful combinations of field 
and remotely sensed data collection, interpretation, and anal­
ysis and appropriate application are important to increase 
confidence in the ability of remote sensing to address many 
applied questions and to streamline associated costs. 

Need to improve analysis at differing spatial 
and temporal scales 

Incorporation of different data sources to refine remotely 
sensed measures of active fire and post-fire ecological 

http://giscenter.isu.edulresearch
http://www.nrmsc.usgs.gov/researchindbr.htm
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measures would take advantage ofthe spatial and spectral res­
olution of different satellite sensors. There are a wide range 
of potential uses of different sensors, and the appropriate 
technique and image data sources may depend on the objec­
tive ofthe study. For example, sensor requirements to assess 
post-fire resprouting of chaparral shrubs are likely different 
to those ofmanagers trying to assess watershed-level erosion 
potential following wildfire near homes in southern Califor­
nia. Although LandsatTM and ETM data are most commonly 
used to assess post-fire ecological effects in North America, 
application of alternative sensors (ASTER, MODIS, Quick­
bird, IKONOS, airborne hyperspectral sensors) with varying 
spectral, spatial, and temporal resolutions warrants further 
investigation. For example, once ASTER data are available 
for an area, post-fire tasking of the ASTER TERRA satellite 
sensor with higher spatial resolution than Landsat in the near­
infrared wavelength bands could provide better information 
about post-fire effects. Furthermore, in comparison with the 
single short wave infrared (SWIR) band of Landsat that is 
used in NBR (i.e. Landsat band 7), the ASTER sensor has 
five SWIR bands. These alternative SWIR bands (or alterna­
tive NBR variants) may vary in their effectiveness with soil 
type and other factors. Many units ofthe NPS have purchased 
high spatial resolution Quickbird or IKONOS imagery as part 
of their inventory and monitoring efforts. These sensors may 
also provide better information on the potential for fine-scale 
slope failure, regeneration capacity of vegetation post bum, 
and the longer-term effects of fire on ecological integrity. 
Additional research is needed to explore the potential value 
of airborne sensors that can be continuously tasked to study 
temporal, as well as high spatial and spectral variations. 

Traditional remote sensing platforms are limited 
to two-dimensional data 

The predominant availability of only 2-D satellite sensor 
data limits inferences about crown height, crown base height, 
and crown bulk density, all of which influence fire behav­
ior, fire intensity, and hence both fire and bum severity. The 
availability oflight detection and ranging (lidar) systems, and 
their ability to accurately measure vegetation height, should 
facilitate studies that incorporate information from both two 
and three-dimensional data sets to improve estimates ofpost­
fire effects and pre-fire fuel conditions. Lidar has particular 
potential for assessing crown bulk density, described as the 
foliage biomass divided by the crown volume, because it 
does not saturate at high biomass levels (Drake et al. 2002; 
Riaiio et al. 2003). Crown bulk density has been regarded 
as one of the most critical variables for modelling crown 
fire behavior (Scott 1999), because where trees are dense, 
fire easily spreads from one tree to the other. Lidar is able to 
detect subtle differences in vertical structure (recording accu­
racy of 5-15 cm, Baltsavias 1999). Pre-fire lidar can provide 
a three-dimensional canopy fuels measurement that can be 
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used to describe crown volume and structure. As such, lidar 
may allow the development of an improved metric for use in 
crown fire models, instead of the current reliance of mod­
els on crown bulk density. Some researchers have integrated 
multi-spectral and structural (i.e. lidar) data to model canopy 
fuels (Hudak et al. 2002). 

Recommendations 

Scientists and managers use remote sensing to map, under­
stand, and predict the ecological effects of fire. Much has 
been learned; challenges remain. Our recommendations for 
increased effectiveness follow. 

Use terminology consistently 

Jain et al. (2004) recommend that researchers simply 
report what they are actually measuring (be clear about level 
of inference in methods), identify the temporal and spatial 
scale that is being referenced, avoid categorical descrip­
tion (low, moderate, and high, unless defined with range of 
observations), and define all terminology (active v. post-fire 
effects). We agree. Such an approach should enable scien­
tists to communicate more effectively and managers who 
juggle a variety ofresource objectives to make more informed 
decisions about where within the fire disturbance contin­
uum to concentrate prevention, suppression, or mitigation 
efforts (Jain et al. 2004). If there is a need to categorize 
or group different measures, then we advocate limited use 
of the expressions 'fire intensity', 'fire severity', and 'bum 
severity' (owing, in many instances, to their clear overlap 
on the temporal gradient). Instead, we propose that var­
ious processes associated with fire intensity and severity 
be evaluated purely in terms of either active fire charac­
teristics or post-fire effects. As adopted within the present 
review, active fire characteristics would be concerned with 
all timely measurements 'during' the fire (e.g. information on 
the heat generated by the fire, the fire duration, the immedi­
ate combustion ofthe biomass, and other ecosystem changes 
induced by the fire process), which could include the flam­
ing, smouldering, or residual combustion stages. These are 
the direct, first-order fire effects (Reinhardt et al. 1997, 
2001). In contrast, post-fire effects would involve all mea­
surements acquired after the fire has passed (e.g. soil char­
ring, nutrient changes, surface spectral changes, vegetation 
response). These are the indirect, second-order fire effects 
(Reinhardt et al. 1997, 2001). 

Quantify and validate metrics ofpost-fire effects 

There are no consistent indicators or classifications of 
post-fire effects (Morgan et al. 2001). Those that exist are 
largely qualitative and plot-based. Quantitative indicators 
of post-fire effects are needed that encompass fire effects 
on both the overstory and the soil surface (Morgan et al. 
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2001). These indicators must be useful across a broad range 
of site conditions, readily mapped remotely or in the field 
and remotely, and linked to conditions representing pre-fire 
(e.g. fuels and forest structure), during fires (fire behavior, 
fuel consumption, and soil heating) and post fire (vegeta­
tion response, soil erosion potential, and invasive species 
risk). A new generation of tools is needed to support strate­
gic fire management before (fuels management), during (fire 
management), and after (rehabilitation) wildfires. 

With increased reliance on remote sensing, field validation 
data becomes even more important, but where and how the 
field data are collected (e.g. plot size, stratification) must 
be adapted to the spatial resolution of the sensor and the 
wide range ofconditions represented in the imagery. However 
logical it may seem that higher spatial resolution will likely 
better represent the fine-scale heterogeneity found in most 
fires, this has not been proved. 

The remote sensing measure should be validated for 
each application environment by comparing it to equivalent 
surface processes or properties. For instance, concern has 
appropriately been raised about the widespread application of 
spectral index-based methods without establishing the valid­
ity and mechanistic relations between post-fire effects and 
such spectral indices across a variety of environmental con­
ditions (Roy et al. 2005; Smith et al. 2005b). For example, 
the NDVI index applied to satellite imagery effectively pro­
vides a measure of the greenness of each pixel. In the case 
ofpost-fire assessment, an equivalent surface measure would 
include an average measure ofgreen vegetation cover within 
a corresponding area of interest on the ground. Likewise, if 
a change in NDVI is used to assess differences between pre­
and post-fire environments, an equivalent surface measure 
could be the change in green vegetation cover before and 
following the fire. 

Validation ofdNBR should be conducted in a wide range of 
environments to ensure that the adopted range of dNBR val­
ues, as cited by Key and Benson (2002) and commonly used in 
post-fire assessment studies, are valid for those environments, 
or that a process be recommended for local calibration. The 
authors ofthe dNBR technique never intended the bum sever­
ity class break values developed for fires in Glacier National 
Park, MT, (i.e. the location ofthe original dNBR study) to be 
universal thresholds (cf. Key and Benson 2006). Further, as 
each index (NBR and dNBR) has a different range of values, 
separate breaks should be developed for analysis at different 
temporal periods following fire and depending on which of 
these methods are applied. 

Importantly, the seven levels of dNBR proposed by Key 
and Benson (2002) are only valid in other environments 
if the changes in the surface properties that occur in the 
environment of interest are similar to those observed within 
Glacier National Park. When considering the wide variation 
of different fuel conditions and fire regimes, this is unlikely. 
Understanding that many prior studies have used CBI, the 
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solution is to follow the original methodology used by Key 
and Benson (2002). For each environment of interest, make 
local field measurements of the CBI over a range ofpost-fire 
conditions. The CBI methods are described in FIREMON 
(Lutes et al. 2006). Then, correlate the dNBR for the same 
locations with the CBI values measured in the field, and 
use that relationship to identify the thresholds between bum 
severity classes (e.g. Key and Benson 2002; van Wagtendonk 
et al. 2004; Cocke et al. 2005). Rather than then using the 
Glacier National Park dNBR ranges to classify the satellite 
imagery, the CBI field measure could be used to set locally 
meaningful dNBR ranges by providing for each separate envi­
ronment of interest the dNBR ranges associated with fixed 
ranges of CBI values (e.g. Epting et al. 2005). The intent 
of the CBI was to be sufficiently robust to accommodate 
most vegetation communities. The CBI may require some 
minor refinements in some communities, but these refine­
ments remain within the conceptual framework of the CBI 
(cf. Key and Benson 2006). For example, in Alaska, tun­
dra tussocks dominated by sedges, grasses, low shrubs, and 
mosses are treated as heavy fuel. For each environment, this 
recalibration should be conducted at a consistent and avail­
able spatial scale (e.g. the 30 m scale of the Landsat TM 
sensor), as van Wagtendonk et al. (2004) illustrated that 
the relationship between CBI and dNBR for a single envi­
ronment is dependent on the spatial scale of the remote 
sensing instrument. This variation ofpost-fire inferred effects 
with satellite sensor pixel size has further been highlighted 
by Key (2005). 

Synthesize knowledge about fire patterns 
over time and space 

The causes and consequences of spatial variability in fire 
effects is one of the largely unexplored frontiers of infor­
mation. Research needs include a better understanding of 
how post-fire effects and spatial variability are related to 
the pre-fire fuels and topography, pre-fire climate and active 
fire weather, vegetation structure and composition, and land 
use. Recognizing this need, a multi-agency project, Moni­
toring Trends in Bum Severity (MTBS), sponsored by the 
Wildland Fire Leadership Council, has been tasked to gen­
erate bum severity data, maps, and reports for all large fires 
since 1984 (http://www.nps.gov/applications/digest, verified 
25 June 2006). These data will provide a baseline for moni­
toring the recovery ofbumed landscapes and a framework to 
address highly relevant fire and other natural resource man­
agement questions. Knowledge relating to when and where 
various fuel treatments and fire suppression efforts are likely 
to be effective will greatly assist managers in prioritizing and 
making strategic decisions. 

Link remotely sensed measures to the fire process 

Mechanistically linking surface processes to imagery is 
the goal ofremote sensing science. As such the characteristics 
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and scale of both the patterns and the inferred processes 
must be clearly defined. Remote sensing data may represent 
many interacting processes. For example, processes such as 
soil water infiltration may be spatially variable at fine spatial 
scales (e.g. sub-meter and sub-surface), whereas the imagery 
used to view the process may be too coarse to detect sub-pixel 
variation of the process. The methodological approach must 
be transparent, repeatable, and robust if we are to compare 
results from one geographical area with another or among 
sensors. Additionally, it is challenging to deal with fine-scale 
pattern when assigning an overall severity class to a pixel, 
stand (Fig. 1), or landscape (Figs 2, 3). 

One such approach is to measure the fraction of a spe­
cific cover type present within an area at both the field plot 
and satellite pixel scales. A traditional field interpretation 
of severity was the assessment of 'green, brown, and black' 
as indicators of low, moderate, and high severity. This sim­
plistic protocol has a direct parallel to the remote sensing 
method of spectral mixture analysis (SMA), which can allow 
the measurement of the fractional cover within each separate 
pixel (Drake and White 1991; Wessman et al. 1997; Drake 
et al. 1999; Vafeidis and Drake 2005). SMA can be applied to 
commonly available multispectral satellite imagery. Moder­
ate spatial resolution satellite sensors, such as Landsat (30 m 
pixel size), however, are not of adequate spatial resolution 
to accurately capture the fine-scale soil char or white ash 
fractions or their distribution patterns across the landscape 
(Smith and Hudak 2005; Smith et al. 2005b). Therefore, we 
propose that SMA research only be used to evaluate the frac­
tional cover ofunburned (green), scorched (brown), bare soil, 
and charred (black) vegetation, as these measures are analo­
gous to the traditional field 'severity' indicators. Evaluation 
of such fractions provides a link between what we can inter­
pret from satellite imagery and what effects have occurred on 
the ground. Further, as fractions are inherently scalable, SMA 
allows a truly mechanistic link between field and remote 
sensing measures. 

Until we can understand underlying processes and link 
them directly to remotely sensed measures, we are doomed 
to developing empirical relationships for many different envi­
ronments. Fire effects are often 'symptoms' of the impact to 
an underlying process that has been affected by fire. Many 
fire effects are driven by the heat pulse below the soil sur­
face and subsequent impacts on belowground processes, in 
particular nutrient cycling and soil water infiltration. Under­
standing how post-fire effects relate to pre-fire conditions 
(forest structure and fuels) and fire behavior will facilitate 
the development of improved tools for predicting and map­
ping the degree of ecosystem change induced by the fire 
process (e.g. heat penetrating soil, consumption of organic 
materials, change in soil color). This information can lead 
to improved understanding of the role of fire in creating 
conditions that drive sustainable ecosystem processes, struc­
tures, and functions, and in turn to quantitative measures that 

Int. J Wildland Fire 337 

will improve the utility and interpretability ofremote sensing 
assessments. 

Develop and test novel remote sensing methods 

Few remote sensing research studies have actually col­
lected spectral reflectance and thermal information from 
pre- and post-fire surfaces. Although such data have been 
collected in African savannas (e.g. Trigg and Flasse 2000; 
Landmann 2003; Smith et al. 2005b) and in early NBR 
research in North America (e.g. Key and Benson 2002), a lack 
ofpost-fire spectral data exists over the multitude ofother fire 
regimes. This lack of data is problematic as several remote 
sensing methods rely on recalibration within each new appli­
cation environment. Failure to collect these needed data could 
result in use of methods that are not calibrated for a given 
biome. Further to the lack of site-dependent spectral data, 
the majority of current studies assessing the extent of area 
burned or the degree of ecological change with Landsat TM 
data do not use all the data provided to them by the sen­
sor. Namely, thermal infrared is commonly discarded, but 
can provide useful hindsight into the properties of exposed 
soils, arising from the lack of evapotranspiration (due to the 
removal of vegetation). 

Improve estimates oflocal and regionalfire emissions 

Currently fire emission estimates for use in global change 
research generally rely on the parameterization of a sim­
ple model, in which the total biomass combusted (and 
gases emitted) are calculated by area burned x pre-fire 
fuel load x proportion of fuel combusted within the fire 
(Kasischke and Bruhwiler 2003; Smith et al. 2005a). Such 
an approach relies on localized information of the fuel and 
fire conditions extrapolated over the extent of area burned. 
Within the global change community, this approach is known 
to exhibit considerable uncertainties (Andreae and Merlet 
2001; Kasischke and Bruhwiler 2003; French et al. 2004), 
and only the area burned is particularly suited to measurement 
via satellite sensors. In some studies, the proportion of fuel 
combusted over very large areas (e.g. Russian boreal forests) 
has been produced through 'educated guesses' of the likely 
proportion offuel combusted (e.g. Conard et al. 2002; Zhang 
et al. 2004), which in part might explain the significant dis­
crepancy in carbon emission estimates between Siberia and 
North America (Wooster and Zhang 2004). Clearly, emission 
estimates produced using such approaches are not ideal, but 
to date this has been 'the best tool available for the task'. 
The present review has highlighted other research efforts, 
such as the use of the FRP methodology (e.g. Wooster et al. 
2003; Ichoku and Kaufman 2005; Roberts et al. 2005; Smith 
and Wooster 2005), which might allow (provided sufficient 
temporal resolution is available) improvements to the above 
model. 
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Work with managers to determine the scale ofoperations 
and thus, appropriate sensors (and resolutions) 
to address applied questions 

The limitations to remote sensing and associated barriers 
to more widespread use may include costs, user acceptability, 
and technical problems. The benefits (expediency, coverage, 
and reliability of results) must outweigh the technical and 
logistical costs (costs of equipment, human training, and 
field data collection). Users must overcome the technology 
curve associated with the acquisition and processing oflarge 
remotely-sensed data sets. In some cases, there are time con­
straints to the use of remotely sensed data. Fire managers 
need timely and often real-time answers, not loads of data to 
process. Researchers can help develop protocols for process­
ing data, and can partner with managers to provide data and 
interpretations, but their efforts must be sufficiently timely 
and completed without interfering with the operations of the 
fire command. Managers are tasked to focus on fuels treat­
ment and fire management in the wildland-urban interface 
but they may know relatively little about the effectiveness of 
management activities there. Researchers need to develop 
remote sensing products and tools that can address ques­
tions that are directly applicable to these highly visible and 
vulnerable areas. Managers also need standardized proce­
dures for updating vegetation and fuels maps as fires occur, 
monitoring the effects of post-fire rehabilitation treatments 
and modelling post-fire succession. End users must have ~ 
firm understanding ofthe consequences of data use, yet have 
high confidence in data and products. Users must also accept 
that there are inherent problems with satellites and aircrafts, 
such as time intervals between images, clouds obscuring the 
imagery, topographic relief, and surface variations existing 
at a scale that the imagery is unable to detect. 

Conclusions 

When combined with field data, remote sensing can be very 
helpful in mapping and analyzing both active fire charac­
teristics and post-fire effects. Unfortunately, the inconsistent 
use of fire descriptors, including fire intensity, fire severity, 
and burn severity, confuse measurement and interpretation of 
field and remotely sensed fire effects. The use of qualitative 
terms such as fire and burn severity has limited utility, given 
the highly variable nature of fire behavior and subsequent 
effects, and the dynamic aspect of post-fire recovery. Fire 
is a stochastic, spatially complex process that is influenced 
by a multitude of interacting factors, making generalizations 
from one fire to the next difficult (Morgan et al. 2001) unless 
we understand the underlying processes. Using consistent 
terminology is an important step in developing a better under­
standing ofthe causes and consequences ofspatial variability 
of fire effects. 

Remote sensing has great potential for scientists and man­
agers seeking to map, understand, predict, and assess the 
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ecological effects offires. In addition to these current appli­
cations, remote sensing has great potential for detecting and 
quantifying local and regional fire emissions to improve esti­
mates of fire emissions for use in studies of both air quality 
and global climate change. Atmospheric emissions from fire 
increasingly limit the use of prescribed fire, especially near 
urban areas, which are often in need of burning as part of 
restoration and fuels reduction treatments. Global climate 
change research has focused attention on carbon storage, 
release, and sequestration. Remotely sensed data are useful 
for quantifying carbon released by fire, and potentially for 
estimating increases in vegetation growth and carbon seques­
tration post fire. Remote sensing has made great strides in 
terms of providing data to address operational and applied 
research questions, beyond the scope and feasibility that 
ground-based studies can provide. 
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