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27 ABSTRACT 

28 Wildfire effects on the ground surface are indicative of the potential for post-fire 
29 watershed erosion response. Areas with remaining organic ground cover wi11likely 
30 experience less erosion than areas of complete ground cover combustion andlor exposed 
31 mineral soil. The Simi and Old Fires burned -67,000 ha in southern California in 2003. Burn 
32 severity indices calculated from pre- and post-fire multispectral imagery were differenced 
33 (i.e., dNBR) to highlight fire-induced changes in soil and vegetation. Aerial and field 
34 hyperspectral data were also collected together with field ground cover measurements soon 
35 after the Simi and Old Fires. Spectral endmembers representing charred and uncharred soil 
36 and rock, and green, non-photosynthetic, and charred vegetation were used in a constrained 
37 linear spectral unmixing process to determine the post-fire fractional ground cover of each 
38 surface component. The spectral unmixing results, dNBR, and Relative dNBR (RdNBR) were 
39 validated using fractional ground cover estimates from the field to see which product best 
40 represented the conditions on the ground. The spectral unmixing results were significantly 
41 correlated to all classes of charred and uncharred organics and inorganics, and the dNBR was 
42 the best indicator of charred soil and green vegetation. The RdNBR had several significant 
43 correlations with the ground data, yet did not consistently correlate well with any specific 
44 ground cover types. A map ofpost-wildfire ground cover and condition, especially soil and 
45 remaining vegetative cover, is a good indicator of the fire's effect on the ground surface and 
46 the resulting potential for hydrologic response. 
47 
48 Keywords: Hyperspectral; bum severity; remote sensing; southern California wildfires; 
49 spectral mixture analysis; dNBR; Relative dNBR 
50 
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51 INTRODUCTION 
52 Post-wildfire maps are created from remotely sensed data as soon as the fire is out to 
53 capture immediate post-fire conditions of soils and vegetation. These maps are commonly 
54 referred to as burn severity maps and are primarily used to assist rapid-response rehabilitation 
55 crews assess the immediate and long-term fire effects on vegetation, soil, and related 
56 ecological processes (Lentile et al., 2006). Standard burn severity mapping methodologies are 
57 based upon the classification of spectral indices (such as the Normalized Burn Ratio, or NBR) 
58 calculated from differenced pre- and post-fire multispectral satellite imagery (Key and 
59 Benson, 2002; Clark et al., 2003). For these burn severity maps, the landscape is classified 
60 into categories ofunburned, low, moderate, and high, corresponding to the relative magnitude 
61 of change in the post-wildfire appearance ofvegetation, litter, and soil (Miller and Yool, 
62 2002; Lentile et al., 2006; Lutes et al., 2006). 
63 Effects of fire on the ground surface with erosion-related implications include an increase 
64 in exposed soil and ash and a decrease in protective ground cover such as litter and duff. This 
65 post-fire organic ground cover, whether charred or uncharred, can provide protection against 
66 soil erosion (Ice et aI., 2004; Kokaly et al., 2007). Conversely, areas with exposed mineral 
67 soil or ash cover are at an increased risk for erosion by wind and water (DeBano, 2000; 
68 Robichaud, 2000; Ravi et al., 2006). Ash cover is indicative of complete organic material 
69 combustion. Because water repellent soils may be formed when these organic materials burn 
70 on the soil surface, water repellent soils are often found where post-fire ash cover is high 
71 (Lewis et al., 2006). Additionally, fire-induced water repellent soil conditions occur when 
72 waxy chemicals from plant materials are volatilized during burning coat coarse-textured soil 
73 particles at or near the soil surface, which is common in chaparral communities (Barro and 
74 Conard, 1991; CDF 2003; Hubbert et al., 2006). Fire can also strengthen and drive a 
75 naturally-occurring water repellent soil layer deeper into the soil profile (DeBano, 2000). 
76 Fire-induced or enhanced soil water repellency may allow the top 1-5 em ofthe soil profile 
77 above the water repellent layer to hold water, but once this wettable layer becomes saturated, 
78 erosion is likely, particularly on steep slopes with coarse-textured soils coupled with intense 
79 rainfall. 
80 The chaparral community is a shrubby, sclerophyllous vegetation type that is common in 
81 middle elevations throughout much ofCalifornia (Barro and Conard, 1991). Common 
82 chaparral trees and shrub genera include Adenostoma, Arctostaphylos, Ceanothus, 
83 Cercocarpus, Prunus, Quercus, and Rhamnus. Chaparral vegetation is well adapted to 
84 frequent fires that were historically common in the area. Chaparral plant adaptations include 
85 rapid post-fire root sprouting, prolific seeding, seed banking, fire-stimulated seed 
86 germination, and allelopathy (Hanes, 1977; Keeley, 2006a). Frequent fire results in 
87 conversion of shrub-dominated systems to those dominated by a mix of alien annual grasses 
88 and forbs from the Mediterranean Basin. Ground cover is relatively sparse when shrubs are 
89 dominant, and forb (e.g. Phacelia, Penstomen, Mimulus spp.) and grass species are more 
90 common in these systems following fire (McAuley, 1996). Following fire the presence of 
91 native forbs (e.g., Phacelia spp., Penstomen spp., Mimulus spp.) and grasses (e.g., Nassella 
92 spp., Avena spp., and Bromus spp.) tend to be ephemeral « 2 years), while non-native post­
93 fire invaders (e.g., Bromus diandrus (rip-gut brome), Bromus tectorum (cheatgrass), 
94 Centaurea solstitialis (yellow-star thistle), Erodium species (filaree), and Trifolium hirtum 
95 (rose clover) may persist longer (Keeley, 2006b). 
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96 Because many chaparral fires occur near homes and other resources in the wildland urban 
97 interface in southern California, agencies are often obligated to aggressively pursue fire 
98 suppression and rehabilitation activities. Post-fire rehabilitation treatments include seeding, 
99 used as a soil stabilization measure, to reduce soil erosion and the threat of debris flow and 

100 flooding. Several studies have shown that these measures do not always substantially reduce 
101 erosion or flooding (Robichaud et al., 2000; Beyers, 2004), and that native flora may be 
102 displaced by non-natives accidentally introduced into seed mixes (Keeley, 2006b). A 
103 combination ofpre-fire vegetation conditions, soil texture, fire intensity, and post-fire 
104 weather events can complicate post-fire mitigation decisions. 
105 One key difference between chaparral and forested ecosystems is the density of pre-fire 
106 vegetation. Chaparral systems have more open canopies and tend to have less litter 
107 accumulation on the ground than in a typical coniferous forest. This creates a unique situation 
108 when classifying the severity of the fire using a differenced index (dNBR) which is dependent 
109 on the magnitude of change from pre- to post-fire condition (Miller and Thode, in press). 
110 Where vegetation is sparse, the complete removal ofvegetation due to fire will be classified 
111 as high bum severity, even though the relative change to the pre-fire condition is not as great 
112 and the effects on the soil are also likely not as severe. This potentially leads to unnecessary 
113 treatment for erosion mitigation based on the perceived burn severity, rather than the physical 
114 alteration of the soil. Miller and Thode (in press) have recently proposed a new index, the 
115 Relative dNBR or RdNBR which takes into account the relative pre-fire to post-fire change in 
116 amount ofvegetation across the landscape. They suggest that this relative index may be more 
117 appropriate than the dNBR for mapping sparse vegetation or mixed vegetation types. 
118 Higher spatial and spectral resolution airborne hyperspectral data also have the potential 
119 to improve upon traditional burn severity maps by providing fine-scale quantitative 
120 information about post-fire ground cover and condition (Robichaud et al., in press). Rather 
121 than applying a discrete classification to an area, a final product from hyperspectral imagery 
122 can provide an estimate of the percent remaining ofpost-fire charred ground cover and ash 
123 for an area (pixel) as small as 4 or 5 meters. This information may be helpful in guiding post­
124 fire assessment to determine locations to apply rehabilitation treatments by better quantifying 
125 the effects of the fire on the soil surface. 
126 The reflectance from a specific image pixel is a mixture of the individual reflectance 
127 spectra (endmembers) of the mix of surface materials (Adams et al., 1985; Smith et al., 1990; 
128 Roberts et al., 1993). Each pixel retains the characteristic features of the individual spectra 
129 from each of the component reflective materials. Once endmember spectra are identified, 
130 spectral unmixing of individual pixels can estimate the fractional component spectra and, in 
131 tum, the physical fractional component of the materials within the pixels (Adams et al., 1985; 
132 Roberts et al., 1993; Theseira et al., 2003). Most rural landscape scenes can be mapped as 
133 endmember combinations of green vegetation, non-photosynthetic vegetation, soil and rock, 
134 and shade (Roberts et al., 1993; Adams et at., 1995; Theseira et al., 2003). More specifically 
135 related to fire, hyperspectral imagery has been used to map fractional cover of ash, soil, green 
136 and non-photosynthetic vegetation in post-fire scenes (Jia et at., 2006; Kokaly et al., 2007; 
137 Robichaud et at., in press). Our objectives were to assess the potential ofhyper spectral 
138 imagery to provide a better estimate ofpost-fire soil condition, particularly the amount of 
139 high soil bum severity, than had been achieved with traditional multispectral imagery. 
140 
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141 METHODS 
142 Study area 
143 The Simi and Old Fires were two of several large wildfires that burned throughout 
144 southern California during the fall of2003 (Figure 1). These fires threatened thousands of 
145 homes and impacted air and water quality throughout the region. The Simi Fire began on 25 
146 October 2003 and burned 43,800 ha in Ventura and Los Angeles counties, before being 
147 contained on 2 November 2003 (Clark et al., 2003). Driven by strong Santa Ana winds, the 
148 fire jumped State Highway 126 and burned around the densely populated towns of Simi 
149 Valley, Moorpark and Saticoy, California. The Simi Fire burned in a mix ofvegetation types 
150 including chaparral (the dominant vegetation type), coastal sage scrub, and annual grasslands 
151 and across a diversity of topographic conditions including sandy, rolling hills and very steep, 
152 rocky terrain. The underlying bedrock in the area is comprised of sedimentary rock, with 
153 overlying sandy loam soils (USDA, 2006). The soils and rock are light colored, and large 
154 patches ofrocky outcrops are common. Immediately post-fire, a bum severity map for the 
155 Simi Fire was created from post-fire airborne multispectral MASTER imagery 
156 (masterweb.jpl.nasa.gov) acquired on 1 November 2003 (Clark et al., 2003). The majority of 
157 the area within the Simi Fire perimeter was burned at low or moderate severity, and BAER 
158 (Burned Area Emergency Response) teams in the field reported that the burn severity map 
159 was generally representative of the conditions observed on the ground (CDF, 2003; Clark et 
160 al., 2003). However, several watersheds were assessed as having burned at higher severity 
161 than indicated on the map and were identified as areas at risk for increased post-fire erosion 
162 and debris flow (Cannon et al., 2003; CDF, 2003). The BAER assessment team also noted the 
163 presence ofwhite ash in severely burned areas and therefore the potential presence ofwater 
164 repellent soils (CDF, 2003). 
165 The Old Fire began on 28 October 2003 and burned 23,300 ha north of San Bernadino, 
166 California. The Old Fire burned in chaparral and interior woodland vegetation, also on rough 
167 terrain. The Old Fire burned more in the wildland urban interface than did the Simi Fire, as 
168 the area around Lake Arrowhead is densely populated, with homes deep in the wooded areas, 
169 which have suffered from a serious mountain pine beetle outbreak. The combined effects of 
170 frequent human and natural ignitions, hot dry summers, frequent and extended droughts, the 
171 high flammability of chaparral vegetation, and forest trees killed by bark beetles, make these 
172 ecosystems extremely susceptible to intense crown fires (Barro and Conard, 1991; Keeley, 
173 2000; Keeley and Fotheringham, 2001). The immediate post-fire burn severity map for the 
174 Old Fire was created from post-fire MODIS imagery that was acquired on 5 November 2003 
175 (Clark et al., 2003). These bum severity maps were used in the BAER team's assessment of 
176 the potential for increased runoff and erosion and to guide post-fire rehabilitation activities. 
177 These maps were also used to guide our field site selection, but were not used in any 
178 subsequent analyses. 
179 Field data collection 
180 Post-fire soil and vegetation data were collected in December 2003 at six sites on each 
181 fire. These sites were selected using the immediate post-fire bum severity maps as a guide 
182 and classified by observation in the field as low, moderate, or high severity if tree/shrub 
183 crowns were predominantly green, brown, or black, respectively. On the Simi Fire, two sites 
184 we sampled were classified as low burn severity, three as moderate and one as high. On the 
185 Old Fire, one site we sampled was classified as low burn severity, three as moderate and two 
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186 as high. These bum severity classes were only used as a general guide to ensure that the field 
187 data covered the full range ofbum severity conditions within each fire. More low and 
188 moderate bum severity sites were selected at each fire because, as found elsewhere, these 
189 sites showed more spatial heterogeneity in fire effects than the high severity sites (Hudak et 
190 al., 2004). Each site was centered in a random location 80-140 m from the nearest access 
191 road, within a consistent stand and bum severity condition. Each site consisted ofnine 9 m x 
192 9 m (figure 2 says 8x8 - need to clarify center to center or edge to edge) plots and each plot 
193 was comprised of fifteen 1 m x 1 m subplots, for a total of 135 subplots (Figure 2). Plot 
194 centers were geolocated with a Trimble GeoExplorer (trade names are included for the 
195 benefit of the reader and do not imply endorsement by the US Department ofAgriculture or 
196 the University of Idaho) and differentially corrected. Subplot centers were positioned with 
197 measurement tape and compass based on systematic distances and bearings from plot center 
198 (see detailed description in Hudak et al., 2004 or Hudak et al., this issue). 
199 At the subplot scale, the fractional cover ofvegetative cover and percent char of green 
200 vegetation, rock, mineral soil, ash, litter (new and old), and any large organic matter (logs, 
201 branches or stumps) were ocularly estimated. Minor ground cover fractions were estimated 
202 first, and a value ofone percent was recorded if there was a trace of the material within the 
203 subplot. The more abundant fractional ground cover components (often exposed mineral soil 
204 and rock, ash, and litter) were then estimated in 5% increments with the largest cover 
205 component estimated last. All cover fractions were required to sum to unity. Exposed mineral 
206 soil and rock were considered ground cover for the purpose of accounting for all physical 
207 space within a plot. New litter, mostly fallen leaves and needles from scorched shrubs and 
208 trees, was estimated separately from the other cover fractions present at the time of the bum, 
209 to best capture the ground conditions immediately after the fire. Thus, new litter was not 
210 included in the cover fractions that summed to unity. At the center of each site, the depth of 
211 new litter (deposited post-fire), old litter, and duff were measured, a convex spherical 
212 densiometer was used to measure canopy cover (if any), and a digital photo was taken for 
213 reference. 
214 Remotely sensed data collection 
215 Field spectra: Multiple spectra of soil, rock, and green, non-photosynthetic vegetation 
216 (NPV), and charred vegetation materials were collected in December 2003 after both the Simi 
217 and Old Fires using an ASD (Analytical Spectral Devices, Boulder, Colorado, USA) Pro-FR 
218 field spectroradiometer. Spectra were collected with the bare tip foreoptic (FOV 22°) pointed 
219 at the target material. The ASD Pro-FR reports reflectance in 2151 channels spaced 
220 contiguously at 1 nm intervals over the 350 to 2500-nm wavelength range, spanning nearly 
221 the same portion of the electromagnetic (EM) spectrum as the Probe I sensor used for 
222 airborne imaging. The field spectrometer was calibrated against a Spectralon (Labsphere, 
223 North Sutton, New Hampshire, USA) 100% reflective panel immediately before and at 
224 frequent intervals during field spectra collection. Spectralon is a bright calibration target with 
225 well-documented reflectance in the 400 to 2500-nm region of the EM spectrum, and is used 
226 to convert relative reflectance to absolute reflectance. Representative spectra from the Old 
227 Fire are shown in Figure 3. 
228 Airborne hyperspectral: Airborne hyperspectral imagery, which covered the range of 
229 bum severities observed and included all field sites, was collected on 4 January 2004. One 
230 flight line of data was collected over the Simi Fire (Figure 4) and five flight lines ofdata were 
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231 collected over the Old Fire (Figures 5). The Probe I whisk-broom sensor (Earth Search 
232 Sciences Inc.(ESSI), Lakeside, Montana, USA) was flown at 2100 m above ground level and 
233 data were collected along a track ~28 km long and 2.3 km wide, corresponding to a 512 
234 pixel-wide swath with each pixel 4.2 m by 4.2 m at nadir. Reflected EM energy from the 
235 surface was received in 128 contiguous spectral bands that spanned 432 to 2512 nm, with a 
236 spectral bandwidth of 11 to 19 nm. 
237 Radiometric pre-processing: The airborne hyperspectral data were converted to 
238 reflectance using ACORN (Atmospheric CORrection Now) without any additional artifact 
239 suppression (ACORN version 5, Analytical Imaging and Geophysics, 2002). These 
240 reflectance data were further refined with a radiative transfer ground-controlled (RTGC) 
241 calibration (Clark et ai., 2003). This process involved calculating a multiplier from the 
242 differences between the mean image-reflectance spectrum over the area where bright target 
243 calibration field spectra were collected and the corresponding average field-reflectance 
244 spectrum. The multiplier was then applied to the ACORN corrected image-reflectance data 
245 (Clark et ai., 2003). 
246 Geometric pre-processing: An on-board global positioning system (GPS) and inertial 
247 measurement unit (IMU) acquired geolocation data that were matched with the spectral data. 
248 The geolocation data, together with a 30-m digital elevation model, were used to generate 
249 Input Geometry (IGM) files for georeferencing the imagery. The RTGC reflectance images 
250 were georeferenced using these vendor-supplied IGM files. Upon examination, however, 
251 these georeferenced images were found to be distorted by up to seven pixels (~30 m). The 
252 IGM solution files were unable to rectify even larger, systematic distortions in the underlying 
253 imagery delivered by ESSI. Therefore, we rubber sheeted the IGM output images to a I-m 
254 resolution digital orthophoto mosaic produced in ERDAS Imagine (version 8.7), from digital 
255 orthophoto quads downloaded from the California Spatial Information Library 
256 (http://archive.casi1.ucdavis.edulcasil/remote_sensingldoq). Rubber sheeting requires a dense, 
257 systematic grid of image tie points, which were obtained using an automated, area-based 
258 correlation algorithm coded in Interactive Data Language (lDL) by Kennedy and Cohen 
259 (2003). The program allows the user to specify the size and spacing of the image analysis 
260 window, define multiple levels ofpixel aggregation, and set scale factors to zoom in and 
261 more precisely designate tie points. After manually defining a single image tie point in each 
262 flight line to provide the program with a starting reference point, the program generated all 
263 the rest in a systematic grid across the image. The same parameters were used to produce 810 
264 tie points for the Simi image strip, and between 323 and 647 for the five Old image strips, 
265 with the number varying as a function of the length ofthe flight line. The output ASCII files 
266 contain the X and Y coordinates of the tie points from the input and reference images, which 
267 can be imported directly into the Imagine georectification utility for rubber sheeting. Each 
268 image strip was resampled to a 4 m resolution using cubic convolution resampling. The five 
269 rectified images at the Old fire were then mosaicked using nearest neighbor resampling, also 
270 in Imagine. Finally, the geolocation accuracy of the rectified Simi fire flight line and Old fire 
271 mosaic was verified using approximately a dozen differentially-corrected GPS points 
272 collected in the field at the middle ofroad intersections near our field sites. All of these GPS 
273 points were centered where they ought to have been, when displayed over the rectified 
274 imagery. We are confident that all ofthese preprocessing steps produced the fully 
275 radiometrically and geometrically rectified hyperspectral imagery desired for this analysis. 
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276 Landsat multispectral: Landsat ETM+ data were obtained for the purpose of comparing 
277 immediate dNBR and RdNBR index values to the hyperspectral image analysis results. For 
278 the Simi Fire, the pre-fire Landsat scene was collected on 12 September 2002 and the post­
279 fire scene was collected on 10 November 2003. For the Old Fire, the pre-fire scene was 
280 collected on 7 October 2002 and the post-fire scene was collected on 19 November 2003. The 
281 images were provided by the USFS Remote Sensing Applications Center and had been 
282 already orthorectified, calibrated, and converted to top-of-atmosphere reflectance. 
283 
284 DATA ANALYSIS 
285 Ground data 
286 The soil and vegetation data were combined into four categories: uncharred organics (e.g., 
287 green vegetation and NPV), charred organics (burned shrub stems, grasses, and leaves and 
288 needles), uncharred inorganics (rocks and soil), and charred inorganics (rock, soil, and ash) 
289 (Table 1). These classes broadly relate to burn severity and erosion potential as post-fire 
290 organic ground cover decreases erosion potential by protecting the soil. 
291 Remotely sensed image data 
292 
293 Hyperspectral image analysis: A linear spectral unmixing algorithm was applied to the 
294 fully pre-processed hyperspectral data to determine pixel fractions of green vegetation 
295 (grveg), charred vegetation (charveg), and uncharred (soil) and charred (charsoil) inorganic 
296 ground cover: 
297 Ppixel =I{PeCe}+e ={PgrvegCgrveg + PcharvegCcharveg + PsoilCsoil + Pcharsoil Ccharsoil }+e 

LCe =l.0 
298 (Eq. 1 and 2) 
299 where p and C are the reflectance and cover fraction of each endmember, respectively, and E 

300 is an error term. The sum ofthe individual cover fractions sum to unity in Eq. 2. The field 
301 spectra used as endmembers are shown in Figure 3. A single image pixel is a mixture of the 
302 sum ofthe individual reflectance spectra (endmembers) of the component reflective surface 
303 materials (Adams et al., 1985; Smith et al., 1990; Roberts et al., 1993). Once endmember 
304 spectra are identified, spectral unmixing of individual image pixels can estimate the fractional 
305 component spectra and, in turn, the physical fractional component of the materials (Adams et 
306 al., 1985; Roberts et al., 1993; Theseira et al., 2003). The product of the spectral mixture 
307 analysis (SMA) is a fractional cover image for each the input materials, which are scaled 
308 from 0 to 1. Zero indicates that none of the target material is present in the pixel, while 1 
309 indicates complete cover. In addition to the fractional cover images, a root mean square error 
310 (RMSE) image is also produced. This gives an indication of the degree to which the input 
311 endmembers matched the extent of the materials on the ground. The RMSE was 0.04 or less 
312 across both fire images, indicating that these endmembers were most likely indicative of the 
313 ground cover types in the image. 
314 Landsat data analysis: Landsat data (bands 4 (B4) and 7 (B7» were used to calculate the 
315 Normalized Bum Ratio (NBR) index (Eq. 3), the delta Normalized Burn Ratio (dNBR) (Eq. 
316 4) (Key and Benson 2002) and the Relative dNBR (RdNBR) (Eq. 5) (Miller and Fites 2006). 
317 The index values were extracted at the plot locations on both fires and were compared to the 
318 ground data. 
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319 NBR = (B4-B7)/(B4+B7) (Eq.3) 

320 dNBR = NBRpre - NBRpost (Eq.4) 

321 RdNBR = (NBRpre - NBRpost)/ ~(INBRprel/lOOO) (Eq.5) 

322 
323 Endmember fractions were extracted from the unmixed hyperspectral and Landsat images 
324 at all subplot locations (i.e., 135 per site). These subplot values were aggregated to the plot 
325 scale, i.e., 15 subplots to a plot, resulting in 9 plots per site and 54 plots per fire. The spectral 
326 fractions and Landsat spectral indices (NBR, dNBR, RdNBR) were compared to the field­
327 measured fractional cover estimates to evaluate how well the image captured the conditions 
328 on the ground. Correlations were assessed for each endmember using the Pearson correlation 
329 statistic (SAS Institute Inc., 1999) at the subplot (not aggregated) and plot (aggregated) 
330 scales. 
331 
332 RESULTS 
333 As burn severity increased, inorganic cover increased and organic cover decreased as 
334 expected (Table 1). The sparse vegetation conditions are illustrated by less than 50% organic 
335 ground cover on the low burn severity plots after both fires. On the plots burned at high 
336 severity, organic ground cover was only -5%. 
337 Correlations between ground data and remotely sensed data 
338 The spectral fractions from the hyperspectral SMA were significantly correlated to the 
339 corresponding ground cover fractions (Table 2). The strongest correlation for both fires was 
340 between the green vegetation endmember and the field-measured uncharred organic ground 
341 cover (r = 0.67, Simi Fire and r = 0.47, Old Fire). Green vegetation was spectrally distinct in 
342 the image and well-matched to the green vegetation field spectrum used as an endmember. 
343 On the Simi Fire, charred organics (r = 0.26) and inorganics (r = 0.27) had the lowest 
344 correlations between the ground and SMA data. Stronger correlations were found with the 
345 Old Fire data, r = 0.38 for the charred organics and r = 0.48 for the charred inorganics. 
346 Similar correlations were found for the uncharred inorganics on both fires, r = 0.41 on the 
347 Simi Fire and r = 0.37 on the Old Fire. 
348 For comparison, correlations between the ground data and the Landsat-derived dNBR and 
349 RdNBR were also calculated (Table 2). As expected, the strongest correlations were found 
350 for the satellite imagery with for uncharred organics and charred inorganics because of the 
351 greater abundance of these cover types in unburned/low burn severity and high burn severity 
352 areas, respectively. Lower overall correlations were found between the other ground cover 
353 classes and the dNBR and RdNBR values (Table 2). Charred organics and uncharred 
354 inorganics do not singly represent a burn severity class, or a specific degree of change from 
355 pre-fire conditions and are found in mixed quantities across the spectrum ofbum severity. 
356 Therefore, we did not expect that these cover types would be highly correlated with indices 
357 that indicate degree of change from pre-fire conditions, such as a burn severity class. 
358 Spectral mixture analysis images 
359 The spectral mixture analysis results for the Simi Fire are shown in Figure 4. In Figure 4a, 
360 charred vegetation is shown as red, green vegetation as green, and uncharred soil as blue. 
361 This image is a relatively small subset (-15%) of the Simi Fire, however all bum severity 
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362 conditions are included, as well as some unburned areas at the very north and south ends of 
363 the image. Charred vegetation is present across the entire image, much of it mixed with soil, 
364 and shows as a purple or magenta color. The only green vegetation in this subset of the fire is 
365 in some very discrete areas, mostly in valley bottoms. Large patches ofbright blue are rocky 
366 outcrops and the darkest areas are topographic shadows. Figure 4b is similar to Figure 4a, 
367 however, the red color is charred soil rather than vegetation. This is shown to highlight the 
368 similarity ofthe charred soil and vegetation endmembers in the spectral reflectance plot as 
369 well as to show how prevalent soil is across this landscape (red, blue and purple hues all 
370 indicate soil cover). Most of the southern half of this image is soil covered (Figure 4b). There 
371 are some patches of charred vegetation in the central and northern portion, mixed with 
372 charred and uncharred soil. 
373 The Old Fire burned in a mix ofvegetation types, some chaparral, but more in interior 
374 woodlands. The result was a much greater proportion ofburned and unburned vegetation 
375 remaining after the fire than on Simi due to the higher proportion ofpre-fire vegetation 
376 (Figure 5). Again, charred vegetation is shown as red, green vegetation as green, and 
377 uncharred soil as blue. The fire perimeter is identifiable on the image where the red color 
378 within the burned area turns sharply to a green color outside of the burned area. Roads and 
379 the shore of Lake Arrowhead are highly visible within the image (blue). 
380 
381 DISCUSSION 
382 Correlations between ground data and remotely sensed data 
383 Much of the Simi Fire area was characterized by a charred vegetation and soil mix after 
384 the fire. These components were difficult to separate both spectrally and in the field. The 
385 spectral endmembers were likely a mix ofburned shrub stem reflectance and charred soil 
386 background reflectance. Charred soil and charred vegetation endmembers were similar 
387 (Figure 3), and neither resulted in strong correlations with the ground data at the Simi Fire 
388 (Table 2). The strong correlation between uncharred inorganic field component and the SMA 
389 results indicates that uncharred soil and rock were easy to identify in the image, and the 
390 spectral endmember was a good match for the image data. This is likely due to the high 
391 albedo ofun charred rock and soil, the brightest components in the scene. 
392 The sparse vegetation across all burn severity classes on both fires and the mixed 
393 vegetation on the Old Fire justified the need to explore alternate methodologies other than 
394 dNBR for post-fire mapping. Because there was not much pre-fire vegetation or litter to burn 
395 to begin with, dNBR results were likely skewed by the complete absence of vegetation on 
396 some sites regardless of the severity of the burn. To fairly assess the RdNBR relative change 
397 index, it must be acknowledged that it is not designed to identify specific ground cover types 
398 (Miller and Thode, in press). The NBR is derived from a near-infrared band (B4) and a 
399 shortwave infrared band (B7) which are highly sensitive to chlorophyll and water content of 
400 vegetation-changes in live, green vegetation will therefore have the greatest impact on the 
401 index values. The dNBR and RdNBR assign a value to the absolute change (dNBR), or 
402 relative change (RdNBR), from a pre-fire to a post-fire condition. Areas with abundant green 
403 or non-photosynthetic (non-charred) vegetation after a fire are generally unchanged and 
404 classified as low burn severity. Areas that have little or no vegetation remaining and have 
405 abundant charred soil and ash have generally undergone a great change and are classified as 
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406 high burn severity. Therefore, it is reasonable that these cover types had the strongest 
407 correlations with the dNBR and RdNBR values (Table 2). 
408 All correlations between the ground and remotely sensed data would likely be improved if 
409 the ground data and the hyperspectral image data were collected at the same time. Because of 
410 logistical and safety concerns and the presence of smoke, ground data and image data are not 
411 easily acquired immediately after a fire, or even at the same time. There was a one-month 
412 delay after the ground data were collected before the hyperspectral image was acquired and 
413 during this time, the BAER team found that post-fire wind and rain events re-distributed 
414 white ash, which is characteristic of severe fire effects (CDF, 2003). Hudak et at. (2004) also 
415 found weak correlations between similar field and multispectral satellite data across multiple 
416 fires that had burned in a variety of forest vegetation types, and speculated that the time 
417 between fire and the collection of field data was a factor. Hudak et al. (parallel JFE 
418 submission) determined quantitatively that time lags contributed to weaker correlations 
419 between image indices and field fire effects across the Simi and Old fires along with four 
420 other wildfires in Montana and two in Alaska. The inclusion of a shade component in the 
421 spectral unmixing may have improved correlations due to the steep topography in many 
422 places on the Simi Fire (Figures 4a, b). It would have been difficult to derive a high-quality 
423 shaded soil or vegetation endmember-such an endmember would have had to be an image­
424 derived endmember and we were hesitant to add a mixed image spectrum to the 'pure' field 
425 spectra used in the rest ofthe analysis. 
426 Spectral mixture analysis images 
427 The extent to which the ground surface was burned and the amount of remaining organic 
428 ground cover are good indicators of the effects of the fire on the soil surface, or soil burn 
429 severity. Figures 4 and 5 are essentially soil burn severity maps, highlighting exposed 
430 mineral soil and the charred components in the scene. An assessment of the soil burn severity 
431 gives a good indication of the potential for hydrologic response. The steep topography of the 
432 area resulted in much of the Simi Fire image being shaded, which is visible in Figures 4a and 
433 4b on the north sides of ridges. The implication of steep terrain coupled with disturbed soils 
434 and the lack ofvegetative cover was a resulting high-risk for soil erosion. This soil burn 
435 severity map, combined with topographic data could be helpful immediately after a fire when 
436 BAER teams must determine which areas to treat to mitigate erosion. Currently, 
437 hyperspectral data collection, pre-processing, and analysis are in research stages, and are not 
438 yet appropriate for rapid, operational post-fire response. Data processing methods are not 
439 standardized and given the large sized of these data sets, can be challenging. However, as 
440 computer and software technology advances and data are made available more quickly, these 
441 methods have promise for improving bum severity mapping, thus improving post-fire 
442 assessment. 
443 
444 CONCLUSIONS 

445 The endmembers used in the spectral unmixing process for the Simi and Old Fires were 
446 representative of the burned area. There were significant correlations between spectral 
447 abundance in the image and fractional cover measured on the ground for each of the 
448 endmembers used in the unmixing. The Simi and Old Fires presented unique situations for 
449 exploring alternative methods for bum severity mapping. The chaparral vegetation on both 
450 fires was sparse pre-and post-fire, and the Old Fire burned in mixed chaparral and woodland 
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451 vegetation types, creating conditions shown to be incompatible with the relative change 
452 indices dNBR and RdNBR. The spectral unmixing results from the hyperspectral imagery 
453 were significantly correlated to all classes of charred and uncharred organics and inorganics. 
454 The dNBR was the best indicator ofcharred soil and uncharred vegetation, while RdNBR had 
455 several significant correlations with the ground data, yet did not consistently correlate well 
456 with any specific ground cover types. Overall, the results of the spectral mixture analysis 
457 were slightly better than the dNBR and RdNBR at mapping quantitative ground cover 
458 conditions rather than burn severity classes. 
459 While hyperspectral data are currently costly to obtain and time consuming to process, 
460 they will be useful burn severity assessments as hyperspectral image acquisition and 
461 processing becomes more timely and affordable. The field spectra used as endmembers in the 
462 Simi and Old Fire analysis will be useful on future fires in areas with similar vegetation 
463 types. The ability to quantify the exposed soil and remaining vegetation provides a better 
464 assessment of the fire's effects on the ground surface. In tum, the condition of the soil and the 
465 potential for post-fire hydrologic response can be more accurately assessed. 
466 
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608 TABLES 
609 
610 Table 1. Mean ground cover characteristics of the field subplots on the Simi and Old Fires by 
611 burn severity class-standard error of the mean is in parenthesis. Organic ground cover refers 
612 to green and non-photosynthetic vegetation, while inorganic refers to soil, rock and ash. 
613 

Burn severity class 
Ground cover category Low Moderate High 

Simi Fire n=270 n =405 n= 135 

Organic-un charred (%) 25 (1.6) 10 (0.8) 2 (0.3) 

Organic-charred (%) 15 (1.0) 12 (0.7) 5 (0.6) 

Inorganic-uncharred (%) 43 (1.6) 43 (1.4) 53 (2.2) 

Inorganic-charred (%) 16 (1.3) 35 (1.4) 40 (2.1) 

Old Fire n= 135 n=405 n=270 

Organic-uncharred (%) 37 (2.5) 3 (0.2) 0(0.04) 

Organic-charred (%) 14 (1.4) 9 (0.5) 5 (0.3) 

Inorganic-uncharred (%) 30 (2.1) 32 (1.4) 18 (1.1) 

Inorganic-charred (%) 21 (2.4) 57 (1.4) 77 (1.1) 
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614 Table 2. Pearson correlation coefficients (r) comparing measured ground data at the field 
615 plots to the hyperspectral spectral mixture analysis (SMA) and the multi-spectral indices 
616 dNBR and RdNBR. Bold values are significant at p < 0.05. Organic ground cover refers to 
617 green and non-photosynthetic vegetation, while inorganic refers to soil, rock and ash. 
618 

Simi Fire Old Fire 
Ground cover category SMA dNBR RdNBR SMA dNBR RdNBR 
Organic-uncharred 0.67 -0.65 -0.48 0.47 -0.79 -0.77 
Organic-charred 0.26 -0.27 -0.11 0.38 -0.17 -0.27 
Inorganic-uncharred 0.41 0.13 0.36 0.37 -0.48 -0.23 
Inorganic-charred 0.27 0.47 0.14 0.48 0.72 0.55 
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619 LIST OF FIGURES 
620 
621 Figure 1. Map of Cali fomi a showing the locations of the Simi and Old Fires. 
622 
623 Figure 2. Spatial layout of field plots. Need to clarify 8x8 or 9x9 - to center or edge of plots. 
624 
625 Figure 3. Example field spectra ofuncharred soil, green vegetation, non-photosynthetic 
626 vegetation, charred soil, and charred vegetation field spectra collected from the Old Fire. 
627 Water absorption bands in the ranges of 1360-1400 nm and 1800-1980 nm were removed. 
628 
629 Figure 4. a) Image showing charred vegetation (red), green vegetation (green), and uncharred 
630 soil (blue) on the Simi Fire, and b) Image showing charred soil (red), green vegetation 
631 (green), and uncharred soil (blue) on the Simi Fire. These images are the result of the linear 
632 spectral unmixing algorithm that was applied to the hyperspectral data. 
633 
634 Figure 5. Image showing charred vegetation (red), green vegetation (green), and uncharred 
635 soil (blue) on the Old Fire. This image is the result ofthe linear spectral unmixing algorithm 
636 that was applied to the hyperspectral data. 
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