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Abstract 

Bum severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral 
imagery has the potential to provide important information about fine-scale ground cover components that are indicative of bum severity after 
large wildland fires. Airborne hyperspectraJ imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the 
application of high resolution imagery for bum severity mapping and to compare it to standard bum severity mapping methods. Mixture Tuned 
Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance ofash, soil, and scorched and green 
vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (,-2=0.21 to 
0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat­
derived differenced Normalized Bum Ratio (dNBR) values and the ground data was also evaluated (,-2=0.20 to 0.58) and found to be comparable 
to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess 
the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover 
and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes. 
© 2006 Elsevier Inc. All rights reserved. 
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1. Introduction 

1.1. Justification 

Bum severity is a broad tenn used to describe the magnitude 
of fire effects on vegetation and soil and related ecological 
processes (Lentile et aI., 2006). The severity ofa wildland fire is 
mapped as soon as possible to capture immediate postfire 
conditions and to assist rapid response rehabilitation crews in 
mitigating immediate and long-tenn fire effects on the 
landscape. Bum severity and recovery potential vary depending 
upon the pre-fire environment and the intensity and duration of 
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the fire in a given location (DeBano et aI., 1998; Ice et aI., 2004; 
Ryan, 2002; Ryan & Noste, 1983; van Wagtendonk et aI., 
2004). Although a continuum offire effects on the environment 
can be evaluated to assess bum severity (Jain et aI., 2004), it is 
generally mapped in discrete categories of unburned, low, 
moderate, and high, corresponding to the relative magnitude of 
change in the post-wildfire appearance of vegetation, litter, and 
soil (Lutes et aI., 2006; Miller and Yool, 2002). 

Potential watershed responses to wildland fire, such as 
increased peak flows, runoff, and erosion, typically increase 
with severity of fire effects on the ground-surface (DeBano, 
2000; Moody & Martin, 2001; Moody et aI., 2005; Robichaud, 
2000). Areas that exhibit characteristics ofmoderate or high soil 
bum severity, such as soil charring (gray to orange soil color) and 
complete loss of vegetative cover, are at increased risk of soil 
erosion. Postfire assessment and mapping of soil bum severity 
and soil exposure is crucial for making decisions concerning 

003442571$ - see front matter © 2006 Elsevier Inc. All rights reserved. 
doi: 10.10 16/j.rse.2006.11.027 

mailto:address:sarahlewis@fs.fed.us
www.elsevier.comllocate/rse
http:www.sciencedirect.com


- -
468 P.R. Robichaud et al. / Remote Sensing ofEnvironment J08 (2007) 467-480 

erosion mitigation and hills lope stabilization treatments (Lewis 
et ai., 2006; Parsons, 2003). 

The goal ofthis study was to determine how remotely sensed 
hyperspectral data can be used to analyze and map postfire soil 
burn severity. The specific objectives were to: 1) use spectral 
mixture analysis of hyperspectral imagery to discriminate 
ground characteristics that are indicative of soil burn severity; 
2) compare ground measurements to the relative abundance of 
each endmember estimated from the spectral mixture analysis; 
and 3) compare spectral mixture analysis results of the burned 
area with a standard bum severity map derived from 
multispectral imagery. 

1.2. Traditional burn severity mapping 

Bum severity maps are typically created from multispectral 
satellite imagery such as Landsat Thematic Mapper (TM) or 
Enhanced Thematic Mapper Plus (ETM+) (Clark et ai., 2003; 
Orlemann et ai., 2002; RSAC, 2005). TM and ETM+ are often 
used because transformed reflectance (R) values of two bands, 
near-infrared (NIR; band 4: 750-900 nm) and mid-infrared 
(MIR; band 7: 2090-2350 nm), are particularly sensitive to fire­
induced changes in vegetation and soil (Lutes et ai., 2006; van 
Wagtendonk et ai., 2004). A decrease in green vegetation and 
vegetation moisture, due either to fire or to vegetative 
productivity, causes R4 to decrease with burn severity, while 
R 7 increases because of the decrease in moisture and increased 
exposure of soil and rock and fewer shadows from trees (Lutes 
et aI., 2006). Therefore, the normalized ratio of these bands, 
known as the Normalized Bum Ratio (NBR), is used as an index 
ofbum severity (Lutes et ai., 2006). The NBR is calculated by: 

NBR = (R4-R7)/(R7 + R4). (I) 

Because the change in vegetation and soil properties due to 
the fire is a more appropriate measure offire effects than simply 
the postfire surface condition, pre- and postfire NBR values are 
commonly differenced: 

~NBR = NBRpre-NBRpost (2) 

with the resulting index known as the differenced Normalized 
Bum Ratio (dNBR) (Lutes et aI., 2006). NBR values are 
strongly positive when vegetation is green and thriving. When 
vegetation is sparse or senesced, NBR values are near zero; 
when soil exposure is high and there is little or no green 
vegetation (such as after a recent fire), NBR values are negative 
(Lutes et aI., 2006). dNBR is also driven by green vegetation 
and soil exposure, at either end of the bum severity spectrum, 
but since the pre- and postfire values are differenced, low dNBR 
values indicate low bum severity and high dNBR values 
indicate high burn severity (opposite ofNBR). 

Higher dNBR values are indicative of areas that experienced 
the greatest change due to the fire, or high burn severity. High 
burn severity generally indicates some or all ofthe following: an 
increase of scorched and blackened vegetation and a decrease in 
green vegetation, a decrease in vegetative and soil moisture, and 
increased exposure of light-colored soil and ash (Lutes et ai., 

2006). Unburned and areas burned at low severity are indicated 
by little change from pre-fire conditions, with only light or fine 
fuels being consumed and minimal increase in soil exposure. 

The dNBR is calculated using an immediate postfire image 
for an initial assessment, and may be repeated one or more years 
later for an extended assessment. The initial assessment quickly 
provides a map of the fire perimeter and a preliminary estimate 
of burn severity to be used for stabilization and rehabilitation 
planning. However, the initial assessment may not capture the 
actual severity of the fire, which is evidenced by delayed tree 
mortality and revegetation. An extended assessment gives a 
better evaluation of the long-term ecological consequences, 
which are evaluated from the vegetation recovery and the rate of 
return to pre-fire conditions-a process that can take up to 10 
years or more. One difficulty ofextended assessment is the need 
to calibrate observed responses to pre-fire conditions which may 
become more difficult in subsequent years (Lutes et aI., 2006). 

Few studies have assessed the quantitative, physical 
characteristics of dNBR classes on the ground (Roy et ai., 
2006). The dNBR has primarily been evaluated through 
comparisons to the Composite Bum Index (CBl), an index of 
burn severity assessed in the field across a matrix of vegetative 
criteria to validate the dNBR (Lutes et ai., 2006). The dNBR has 
been compared to CBI plots with reasonable agreement (Cocke 
et aI., 2005; Epting et aI., 2005; Sorbe1 & Allen, 2005; van 
Wagtendonk et aI., 2004). Drawbacks of the dNBR and the CBl 
are that both are qualitative indices which are prone to 
subjectivity when they are stratified into burn severity classes 
(Lentile et ai., 2006). Another drawback of the CBl is that it 
requires knowledge of the pre-fire conditions as all values are 
assigned based on the change in condition due to the fire. Hence, 
the CBl and dNBR are most accurately assessing the magnitude 
of change, rather than the current conditions on the ground. 

Burned Area Reflectance Classification (BARC) maps are 
created from classified dNBR values as soon as possible after a 
fire (Lutes et aI., 2006; RSAC, 2005). Valuable time and re­
sources are spent by postfire assessment teams adjusting 
preliminary BARC maps to produce an acceptable bum severity 
map related to surface/soil conditions or vegetation mortality 
(Clark et aI., 2003; Hardwick et aI., 1997; Hudak et aI., 2004; 
Parsons & Orlemann, 2002; Patterson & Yool, 1998). BARC 
maps require adjustment because the standard formula that is 
used to classify dNBR values does not universally apply to 
every vegetation type that burns. For example, in grasslands or 
areas of sparse pre-fire vegetation, such as chaparral, complete 
vegetation combustion does not necessarily indicate high burn 
severity as it would in a forest environment. The adjusted 
BARC map classes must represent the magnitude of change 
from pre-fire conditions. Modifications regarding specific 
resources at risk help direct the interpretation of the burn 
severity map. To accurately prescribe soil stabilization treat­
ments to high erosion-risk areas, a bum severity map must 
represent fire effects on the soil surface (Parsons, 2003). 

Hyperspectral sensors collect high spectral and spatial 
resolution data that can distinguish finer surface features than 
broadband satellite imagery and may be able to better 
distinguish postfire ground cover and conditions. Jia et aI. 
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(2006) successfully mapped fractional cover of photosynthetic 
and non-photosynthetic vegetation and soils using AVIRIS 
(Airborne Visible and Infrared Imaging Spectrometer) data on 
the Colorado Front Range. van Wagtendonk et al. (2004) 
calculated a multi-temporal band ratio similar to dNBR using 
AVIRIS hyperspectral bands (788 nm and 2370 nm), which 
showed that the ratio between higher spectral resolution data 
may have the potential to be slightly more sensitive to fire 
effects than traditional broadband ratios. Their work illustrated 
the potential advantages of higher spectral resolution and 
suggested exploiting the discriminatory power ofhyperspectral 
imagery for postfire assessment. 

Other methods and sensors have been used to map and 
classify bum severity. Landmann (2003) used a spectral mixture 
model with Landsat data to map ash and combustion 
completeness. His results showed that ash abundance increased 
with increasing vegetation combustion. Smith et al. (2005) used 
a spectral mixture model in an African savannah to determine 
the correlation between increased reflectance (due to the 
increase in white ash) and bum severity. They found that 
when the soil was covered with ash, the reflectance in high 
severity areas was much higher after the fire. Trigg and Flasse 
(2000, 2001) evaluated the ability of visible through long 
wavelength mid-infrared reflectance to detect fires and fire 
effects. They determined that MODIS and Landsat satellite 
sensors are appropriate for detecting and evaluating the effects 
of fire in burned shrub-savannah. Others have made remote 
assessments ofburn severity using Landsat, SPOT, and AVIRIS 
data, many of which are summarized in Lentile et aI. (2006). 

1.3. Hyperspectral remote sensing 

Airborne hyperspectral sensors provide imagery in narrow 
bands of reflectance spectra arranged contiguously from the 
visible through the short-wave infrared (SWIR) range of the 
electromagnetic (EM) spectrum, approximately 400 nm to 
2500 nm. The spectral bandwidth and sampling interval 
typically ranges 10 nm to 20 nm and the pixel size of the 
high spatial resolution images is as fine as 1 m to 5 m, over an 
area of many square kilometers. Field spectrometers provide 
even higher spectral resolution (1-2 nm bandwidths and sub­
meter spatial sampling) for the same spectral range, and can be 
used to relate the reflectance from ground-surface features to 
remotely sensed imagery (Clark et aI., 2002). 

A single image pixel is assumed to be a mixture ofthe sum of 
the individual reflectance spectra (endmembers) ofthe reflective 
surface materials (Adams et aI., 1985; Roberts et aI., 1993; Smith 
et aI., 1990). Each pixel retains the characteristic features of the 
individual spectra from each of the component reflective 
materials; however, they may be influenced by surrounding 
pixels (Townshend et aI., 2000). Once endmember spectra are 
identified, spectral unmixing of individual pixels can estimate 
the fractional component spectra and, in tum, the physical 
fractional component ofthe materials within the pixels (Adams 
et aI., 1985; Roberts et aI., 1993; Theseira et aI., 2003). Recent 
research has suggested that most rural land cover scenes can be 
mapped as endmember combinations of green vegetation, non-

photosynthetic vegetation, soil and rock, and shade (Adams 
et aI., 1995; Roberts et aI., 1993; Theseira et aI., 2003). A 
combination of these endmembers with ash and charred 
vegetation endmembers would account for the majority of the 
cover types in a typical postfire scene. 

Mixture Tuned Matched Filtering (MTMF) is a type of 
spectral mixture analysis that performs a 'partial' spectral 
unmixing by identifying only a single, user-defined endmember 
at a time (Boardman, 1998). The response of the endmember of 
interest is maximized and the unknown background is 
suppressed (Harsanyi & Chang, 1994). The result is similar to 
traditional spectral mixture analysis in that grayscale images 
(scale 0-1, where 1 is a perfect match) of the endmember of 
interest are produced. The advantage of this technique is that it 
is unnecessary to identify all possible endmembers in a scene, 
and it may be superior for vegetation mapping (Boardman et aI., 
1995; Glenn et aI., 2005; Harris et aI., 2006; Mundt et aI., 2005; 
Williams & Hunt, 2002). MTMF may also outperform standard 
mixture modeling in the case of subtle, subpixel occurrences 
(Boardman, 1998), which is often the case after a fire, e.g., 
small litter or ash fractions. Dominant spectral signatures, such 
as exposed soil or charred blackness after a fire, make it difficult 
to discern minor vegetation fractions in an image (Smith et aI., 
1990). The ability to distinguish even small patches of 
remaining vegetation or patches of ash would provide a better 
indication of fire effects on soil. 

2. Study area 

Between 8 June and 2 July 2002, the Hayman Fire burned 
more than 55,000 ha within the South Platte River drainage on the 
Front Range of the Rocky Mountains between Denver and 
Colorado Springs, Colorado (Graham, 2003) (Fig. 1). The South 
Platte River flows from southwest to northeast through the burned 
area, with the Cheesman Reservoir (a municipal water source) at 
risk for contamination via runoff and erosion. The long-term 
average annual precipitation is 400 mm at the Cheesman weather 
station (elevation 2100 m) (Colorado Climate Center, 2004). 
Elevations within the burned area extend to over 3000 m and 
precipitation at higher elevations is likely to be greater than that 
measured at the weather station. The region is semi-arid, with a 
late summer monsoon season characterized by short-duration, 
high-intensity storms. The region is underlain by the granitic 
Pikes Peak batholith, with frequent rock outcrops (Cipra et aI., 
2003). The main soil types are Sphinx and Legault series, which 
are coarse-textured sandy loams, gravelly sandy loams and clay 
loams (Cipra et aI., 2003; Robichaud et aI., 2003). The dominant 
tree species are ponderosa pine (Pinus ponderosa) and Douglas­
fir (Pseudotsuga menziesii) (Romme et aI., 2003). 

An initial burn severity map of the Hayman Fire was created 
from a 16 June 2002 SPOT image (Annette Parsons, pers. comm., 
2005) because Landsat data were not immediately available. This 
burn severity map was used by rapid response postfrre assessment 
teams to guide postfire stabilization and rehabilitation planning, 
but within the scope of this project, the map was used only to 
select ground plot locations (Fig. 1). Landsat data were used at a 
later date to calculate initial and I-year postfire (extended) dNBR 
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Fig. I. Burn severity map of the Hayman Fire. Transect locations and an example transect layout is shown. 

values. The initial dNBR values were classified to create a Burned 
Area Reflectance Classification (BARC) map. The available 
cloud-free dates ofthe Landsat pre-fire, immediate postfire, and 1­
yearpostfire images were 12 May 2001,2 July 2002, and 11 June 
2003, respectively. In this study, we compare the BARC map and 
dNBR values to the ground data and hyperspectral data. 

3. Data acquisition 

3.1. Ground measurements 

Ground reference validation data were collected between 17 
July and 2 August 2002. Approximately 60 sample plots were 
selected in each of the three bum severity classes as delineated 
by the BAER bum severity map. East-west transects were 
established in visually homogenous bum sites at least 20 m 
from roads. The transects were intended to be 200 m in length 
(Fig. 1), with central reference plots at 0 m (west endpoint), 
50 m, and 200 m (east endpoint). The locations of the central 
reference plots were located with a GPS unit. At each reference 
point three 20 m radials were established at 0, 120 and 240°, 
respectively, with a tape and a compass. The sample plots were 
4 m in diameter at the end ofeach ofthese radials. These groups 
of three plots are referred to as plot clusters. 

The actual transect lengths were between 50 and 400 m, 
depending on topography and the uniformity of bum severity. 
The shorter transects only had reference points at each end, 
while the longer transects had reference points at the endpoints 

as well as at 50 m from the west endpoint, and in the case of the 
400 m transect, at 250 m from the west endpoint. In the low 
bum severity class there were three 50 m transects with six plots 
each and five 200 m transects with nine plots each, for a total of 
63 plots along eight transects. In the moderate bum severity 
class there were six 200 m transects and one 50 m transect for a 
total of 60 sample plots along seven transects. In the high bum 
severity class, there were five 200 m transects and one 400 m 
transect for a total of 60 sample plots along six transects. The 
spatial and directional layout of the transects and sample plots 
was designed to encompass the spatial variability of the field 
measurements by sampling at short and long distances between 
sample plots (35 to 435 m apart) as well as sampling in different 
directions so that variation from slope position would be 
captured. Measurements from the 3 plots were averaged to the 
plot cluster scale, to minimize spatial variability at a finer scale 
than the geolocational certainty of the hyperspectral imagery. 

Fractional cover of all present ground cover components was 
visually estimated within the 4-m circle at each plot. Minor ground 
cover fractions, which were often grasses, forbs, shrubs, woody 
debris, or stumps were estimated first. A value of 1% was recorded 
if there was a trace of the material within the plot. The more 
abundant fractional ground cover components (exposed mineral 
soil and rock, ash, and litter) were then estimated in 5% increments 
with the largest cover component estimated last. All cover fractions 
were required to sum to unity. Exposed mineral soil and rock were 
considered ground cover for the purpose of accounting for all 
physical space within a plot. New litter, mostly postfire needlecast 
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from scorched trees, was estimated separately from scorched litter 
that was present at the time of the bum to best capture the ground 
conditions immediately after the fire. Thus, new litter was not 
included in the cover fractions that summed to unity. Percent green 
and percent char (scorch) of all ground cover « 1 m high) 
components were later calculated, and percent soil and rock were 
added together into an inorganic cover fraction, to better test 
correlations between the ground and hyperspectral image data. For 
clarity, the combination ofsoil and rock will be referred to as soil or 
soil cover. 

The number oftrees, their species, height, diameter, crown ratio, 
and percent green, brown and black crown were measured in the 7­
m circle. To estimate the percent of the plot that was occluded by 
overstory canopy vegetation, four densiometer measurements were 
taken, one in each ofthe four cardinal directions, at the edge of the 
4-m circle plot. The mean percent canopy cover was calculated 
from these four measurements and was applied to the entire plot, 
with the remainder considered understory, or ground cover. The 
fractions ofgreen and scorched canopy vegetation were calculated 
as a percent of the total canopy cover of the plot and added to the 
surface vegetation measurements. For clarity, 'ground' data from 
this point on refers to surface combined with canopy vegetation 
measurements at each plot. 

3.2. Field spectrometer data 

From 17-19 July 2002, bright-target ground-calibration field 
spectra were collected through cooperation with the US Geological 
Survey, using an ASD (Analytical Spectral Devices I , Boulder, 
Colorado, USA) Pro-FR field spectroradiometer. Spectra were 
collected with the bare tip foreoptic from a height of ~ 1 m (FOV 
22°), and were assumed to be reasonably homogenous at that 
resolution. The ASD Pro-FR reports reflectance for 2151 channels 
at l-nm spacing over the 350 nm to 2500 nm wavelength range, 
spanning nearly the same portion ofthe EM spectrum as the Probe I 
sensor used for airborne imaging. The field spectroradiometer was 
calibrated against a Spectralon (Labsphere l , North Sutton, New 
Hampshire, USA) 100% reflective panel immediately before and at 
frequent intervals during field spectra collection. Spectralon is a 
bright calibration target with well-documented reflectance in the 
400 nm to 2500 nm region of the EM spectrum, and is used to 
convert relative reflectance to absolute reflectance. An absorption 
feature at 2130 nm unique to Spectralon was corrected before the 
field spectra were related to the image spectra (Clark et aI., 2002). 
The calibration field spectra were collected over spectrally 
homogenous granitic rocks on the north shore of the Cheesman 
Reservoir. All spectra were inspected for quality, and outliers were 
discarded. The mean spectrum of ~ 200 granitic rock spectra was 
convolved to the bandwidth wavelengths of the Probe I sensor. 

3.3. Airborne hyperspectral imagery 

Fourteen adjacent flight lines of airborne hyperspectral 
imagery were collected on 10 August 2002 over the Hayman 

1 Trade names are included for the benefit of the reader and do not imply 
endorsement by the US Department of Agriculture. 

Fire between 1630 and 1900 UTC (solar noon 1905 UTC). The 
Probe I whisk-broom sensor was flown at 2100 m AGL and 
collected data along a track ~ 28 km long and 2.3 km wide­
corresponding to a 512 pixel-wide swath with each pixel 5 m by 
5 m at nadir. Reflected EM energy from the surface was 
received in 128 contiguous spectral bands that spanned 432 nm 
to 2512 nm, with a spectral bandwidth of 11 nm to 19 nm. An 
on-board GPS and inertial measurement unit (IMU) acquired 
geolocation data that were matched with the spectral data 
collection. The geolocation data, together with 30-m digital 
elevation models, were used to generate Input Geometry (IGM) 
files, which were later used to georeference the results. 

Ideally, the hyperspectral imagery would have been acquired 
simultaneously with the field spectra and ground data, but 
smoke, weather, and logistical issues made a time delay 
unavoidable. The most likely differences in the ground 
conditions between the times that the ground data and airborne 
imagery were collected are ash removal and char redistribution 
due to wind and rain, increased needlecast on the ground, and 
green revegetation, particularly near water sources. We were not 
able to measure the percent change ofany ofthese differences at 
the plots; however, casual field observations during this time 
period and at the time of image acquisition suggested that 
changes in these conditions were minor and that the image 
captured the approximate ground conditions at the time of 
ground data collection. 

3.4. Atmospheric correction ofhyperspectral data 

The airborne hyperspectral data were converted to reflec­
tance using ACORN software (Atmospheric CORrection Now, 
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Fig. 2. Spectral reflectance of the image-derived endmembers that were used in 
the MTMF unmixing process. The soil spectrum is a bright, high albedo 
spectrum that is abundant in the Hayman Fire area. Gray ash is a mixture of 
white ash and black char. Scorched vegetation is charred and non­
photosynthetic, while green vegetation is still alive one month after the fire. 
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III Ash cover III Soil cover III Green vegetation 0 Fire perimeter • No value 

Fig. 3. Red, green, blue (RGB) color composite of the unmixed image; the white line is the approximate fire perimeter for reference. Red pixels represent ash, green 
pixels represent green vegetation, blue pixels represent soil, and black pixels represent background material. 

Analytical Imaging and Geophysics LLC, Boulder, CO) 
without any additional artifact suppression (Analytical Imaging 
& Geophysics, 2002). ACORN uses a radiative transfer model 
to calculate atmospheric gas absorptions and scattering; these 
characteristics are then used to convert sensor radiance to 

Table 1 
Number of plots with target material present or detected (n), means, medians, 
ranges and standard deviations (std.) of the measured ground cover and spectral 
values (MTMF scores) of each endmember classified by soil burn severity 

Ground Burn Ground cover (%) 
cover severity n Mean Range Std. 

Ash Low 20 15 0-36 10 
Moderate 20 12 4-30 7 
High 20 25 5-68 17 

Soil Low 21 26 2-70 18 
Moderate 20 46 5-81 20 
High 20 56 22-85 20 

Scorched Low 21 55 2-89 22 
vegetation Moderate 20 48 20-87 19 

High 20 29 13-49 9 
Green Low 21 18 2-31 9 

vegetation Moderate 20 6 0-23 7 
High 12 0-5 1 

MTMF scores 

n Mean Range Std. 

13 7 0-31 10 
16 8 0-25 7 
18 26 0-89 30 
18 2 0-22 5 
15 3 0-10 3 
18 6 0-18 6 
19 13 0-79 19 
17 23 0-59 18 
19 4 0-21 6 
19 11 0-43 11 
14 2 0-17 4 
7 0-3 

The total N in each class is the number of plot clusters: low burn severity (21); 
moderate (20); high (20). 

apparent surface reflectance. The non-smoothed reflectance 
data were further refined with a radiative transfer ground­
controlled (RTGC) calibration (Clark et aI., 2002). This process 
involved calculating a multiplier from the differences between 
the mean image-reflectance spectrum over the area where 
bright-target calibration field spectra were collected and the 
corresponding average field-reflectance spectrum. The multi­
plier was then applied to each flight line of ACORN corrected 
image-reflectance data separately (Laes et aI., 2004). Due to the 
geographic extent of the data and the changes in atmospheric 
conditions in the time required to acquire all 14 flight lines, 
residual atmospheric effects were still apparent in the corrected 
data. Thus, each flight line was processed and analyzed 
separately to avoid exacerbation of these residual differences. 

4. Data analysis 

4.1. Image analysis 

Eleven water vapor bands near 1400 nm and 1900 nm and 
two other noisy bands (895 nm and 2512 nm) were excluded 
from image analysis. The remaining 115 bands of RTGC­
corrected image-reflectance data were reduced further with the 
Minimum Noise Fraction (MNF) transfonnation to 20 MNF 
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Fig. 4. Grayscale images of the mixture tuned matched filter (MTMF) scores: a) ash MTMF, b) soil MTMF, c) scorch MTMF, and d) green MTMF. Bright areas 
represent higher fractional cover; scale is 0-1. An approximate fire perimeter (white line) is shown for reference. 

bands. The MNF transfonnation is essentially a two-phase 
principal component analysis that segregates the noise from the 
data resulting in a reduced number ofbands containing the most 
meaningful infonnation (Green et aI., 1988). The first 20 MNF 
bands were evaluated based on the associated eigenvalues and 
detennined to have the most spectral infonnation and the least 
amount of noise. The MTMF partial-unmixing algorithm 
(Boardman, 1998) was applied to the 20 MNF-transfonned 
bands on all 14 flight lines separately. 

A libraty ofimage-derived endmembers representing gray ash 
(a mixture of white ash and black char), soil, and scorched and 
green vegetation was created for each flight line for use in the 
unmixing process. The endmembers were identified using the 
Pixel Purity Index (pPJ) routine (Boardman et aI., 1995) in ENVI 
(Environment for Visualizing Images) software (Research 
Systems Inc., Boulder, CO). The purest pixels, containing one 
homogenous cover type, in each flight line were identified with 

the PPI. By examining the spectral signature ofeach pixel and our 
a priori knowledge ofmost ofthe fire area we were able to select 
pixels in each flight line that represented ash, soil, scorched and 
green vegetation. The mean spectral signature ofthe pure pixels in 
each class was calculated for use in the spectral unmixing. These 
endmembers from flight line 7 are shown in Fig. 2. All the 
libraries were transfonned to MNF space using the same statistics 
file as derived from the MNF transfonnation ofthe corresponding 
flight line. By creating a different library for each flight line, any 
residual atmospheric effects (after the RTGC calibration) were 
present in both the libraty and the corresponding flight line, thus 
minimizing their effect on the unmixing process. A disadvantage 
ofthis method is that a slightly different library was used for each 
flight line, somewhat reducing the consistency from one flight 
line to the next, which is apparent in the mosaicked image (Fig. 3). 

Two gray-scale output images were produced for each input 
spectrum on each flight line: a matched filter score and an 
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Table 2 
Pearson correlation coefficients (r) between ground and image data (n=61 plot clusters) 

Ground cover Hyperspectral imagery Landsat imagery 

Green MTMF ScorchMTMF AshMTMF Soil MTMF NBR Immediate dNBR Extended dNBR 

Green vegetation (%) 
Litter (%) 
New litter (%) 
Scorched vegetation (%) 
Ash (%) 
Soil (%) 

0.70 
0.53 

0.29 

-0.53 

0.27 
0.69 
0.46 

-0.25 

-0.29 

-0.29 

0.65 

-0.35 
-0.49 

-0.32 

0.47 

0.76 
0.76 
0.29 
0.53 

-0.36 
-0.62 

-0.76 
-0.71 
-0.24 
-0.49 

0.44 
0.50 

-0.68 
-0.48 
-0.19 
-0.25 

0.50 
0.24 

Non-significant correlations are denoted by (-), other correlations are significant atp-value<0.05. 

infeasibility value (Boardman, 1998). The MTMF score indicates 
how well the image pixel compares to the library reference 
spectrum and measures how spectrally abundant that material is in 
the image pixel. Spectral abundance in an image pixel 
corresponds to physical abundance in the same location on the 
ground. A score ofzero means no match to the input endmember 
and no presence of the material in a pixel, while a score closer to 
one indicates a better match to the input endmember and greater 
abundance ofthe material in the pixel. The infeasibility (IF) value 
shows how likely or unlikely the match is. In general, pixels that 
combine higher MTMF scores with low IF values are a better 
match to the endmember spectrum. A scatterplot ofMTMF score 
versus infeasibility is used for the selection of pixels that best 
match the library reference spectrum and to eliminate pixels 
where high IF values occurred with positive MTMF scores (i.e., 
false positives) (Laes et aI., 2004). 

As the MTMF routine is a partial-unmixing process, the sum 
of the MTMF scores at each pixel was almost always less than 
unity because unidentified background material existed in 
nearly every pixel. The MTMF routine projects the mean of the 
background data to zero (i.e., half of the background will have 
negative values). Negative MTMF scores or MTMF scores 
greater than 1 (for at least one of the four endmembers) were 
present on ~ 90% of pixels, both of which are physically 
meaningless. These values were re-scored as 0 or 1 to indicate 
no match or a perfect match, respectively, to .the input 
endmember. Finally, all MTMF scores were multiplied by 100 
to assess the 1: 1 correlations with the ground data. 

Once each flight line was unmixed, the resulting score and 
infeasibility images were georeferenced, and all the flight lines 
were combined into a single image mosaic. This image 
contained eight continuous gray-scale bands: IF and score 
images for each of the component spectra of ash (ash score), 
scorched vegetation (scorch score), green vegetation (green 
score), and soil (soil score). The mosaicked image revealed 
location discrepancies between features on adjacent flight lines. 
Where the flight lines overlap, up to 30-m (6-pixel) differences 
were visible. Fortunately, most ofthe ground plots did not fall in 
these overlap regions between flight lines. To evaluate the 
accuracy ofthe georeferenced image, distances and directions to 
road intersections were measured for about half ofthe transects, 
and errors of 5 m to 10 m (1-2 pixels) were found to be 
common. To compensate for some of the geolocational 
uncertainty and the effects of surrounding pixel radiance, 
pixel values within a 5-m radius footprint around each plot 

location were averaged. Similarly, the means 00 MTMF scores 
and 3 dNBR values (extracted from the BARC map) were 
calculated for each 3 plot cluster in the same manner as was 
done for the ground data so that all data were being compared at 
the same spatial scale. 

NBR values were calculated from the hyperspectral imagery 
using approximately the same wavelengths that van Wagten­
donk et al. (2004) used to calculate dNBR with AVIRIS data. 
These wavebands, at 780 nm and 2371 nm, correspond to 
Landsat bands 4 and 7, respectively (see Eq. (1». As only 
postfire hyperspectral data were available, the differenced NBR 
(dNBR) values were not calculated. The hyperspectral NBR 
values were extracted at the plot locations and averaged for each 
plot cluster. 

4.2. Statistical analysis of unmixing results relative to ground 
measurements 

Detailed ground observations from the 61 plot clusters were 
used to evaluate the image unmixing results. Correlations 
between the 61 ground data values and the spectral abundance 
from the unmixing results (MTMF scores) were assessed for 
each endmember using the Pearson correlation statistic (SAS 
Institute Inc., 1999). Correlations between ground data and the 
hyperspectral NBR values, and the Landsat-derived dNBR 
(immediate and extended) values were also calculated, and all 
correlations were regarded as significant when p-value<0.05. 
Linear regressions (SAS proc REG) with ground data as the 
independent variables and spectral data as the dependent 
variables were used to further examine the relationship between 
the ground and spectral data. 

5. Results 

5.1. Comparison ofunmixing results with ground measurements 

The presence ofash was spectrally detected in 47 ofthe 60 plot 
clusters that had ash present. Green and scorched vegetation were 
accurately detected in 40/53 and 55/61 of the plots, respectively, 
and at least a trace ofsoil was spectrally detected in 51/61 plots with 
soil or rock present (Table 1). MTMF scores of the selected 
endmembers were abundant across the entire image, especially 
within the fire perimeter (Fig. 4). The means and medians of the 
measured ground values were generally higher than the 
corresponding MTMF scores (Table 1 and Fig. 5), yet the positive 

http:p-value<0.05
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correlations between the ground measurements and the MTMF 
scores indicated that as more of a material was measured on the 
ground, the MTMF scores increased as well (Table 2). 

The strongest correlation between a ground measurement and 
MTMF score was green vegetation (r=0.70), which can be 
attributed to the relative ease of detecting the canopy vegetation 
with an airborne sensor (Table 2). Green MTMF scores were also 
significantly correlated with litter (r=0.53), which may reveal a 
certain amount ofmoisture or greenness left in some of the litter 
on the ground, most likely in the areas bumed at low severity. 
Litter (r=0.27), new litter (r=0.69), and scorched vegetation 
(r=0.46) had the strongest correlations with the scorch MTMF 
score; these were the driest and partially charred vegetation 
components. Percent soil and rock had a significant correlation 
with the soil MTMF score (r=0.47). Ash was the only variable 
positively correlated with the ash MTMF score (r=0.65). In the 
areas with more prevalent ash cover, MTMF was an even better 
predictor. When ash cover exceeded 25%, the correlation with 
MTMF was 0.74 while the correlation with dNBR was 0.48. 
When ash cover was less than 10%, the correlation with MTMF 
was 0.10 while the correlation with dNBR was only 0.02 
(although neither correlation is statistically significant at 
p<O.OS). 

The NBR values from the hyperspectral imagery were 
significantly correlated to all of the major ground cover classes 
(Table 2). The strongest correlations were with green vegetation 
and litter (r= 0.76). The weakest correlations were with new litter 

(r=0.29) and scorched vegetation (r=0.53). NBR values were 
negatively correlated with ash (r=-0.36) and soil (r=-0.62). 

When NBR values are differenced (dNBR), low values are 
classified as low bum severity and values increase as the severity of 
the bum, or the magnitude of change from pre-fire conditions, 
increases. The strongest negative correlations between immediate 
dNBR values and the ground data were with green vegetation (r= 
-0.76) and litter (r=-0.71) (Table 2). As bum severity increased, 
the correlations between dNBR values and ash (r=0.44) and soil 
(r=O.SO) became positive. The correlations between the extended 
dNBR values (l-yearpostfire) were similar to the immediate dNBR 
values,just slightly weaker (Table 2). The only correlation that was 
stronger was between the extended dNBR and ash (r=0.50). 

The results from the linear regressions show that the ground 
cover and MTMF scores for all four endmembers were 
statistically related and that MTMF scores may be used to 
quantitatively predict ground cover components (Fig. S). Ash and 
green vegetation had the strongest relationships and the closest 
1:1 fit with the MTMF scores (Fig. Sa, d). For comparison, the 
results of the linear regressions between the ground data and the 
dNBR values showed that as ash (?=0.20) and soil (?=0.2S) 
increased, so did the dNBR values and the overall bum severity 
(Fig. 6a and b). As scorched (?=0.23) and green vegetation 
(?=0.58) increased, dNBR values decreased along with bum 
severity (Fig. 6c and d). The? coefficients were similar to those 
for the regressions with MTMF scores for soil (?=0.22) and 
scorched vegetation (?=0.21) (Fig. Sb,c). MTMF scores are a 
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better predictor of ash (?=0.42), while dNBR values are better 
predictors of green vegetation. 

5.2. Postfire maps and spatial distribution of ground cover 
components 

The individual gray-scale fraction maps (Fig. 4) for each input 
endmember may be viewed individually or in any combination in 
a red-green-blue (RGB) color composite image for simultaneous 
cover type detection (Fig. 3). The grayscale represents the MTMF 
scores: black areas have zero value, or no match to the input 
endmember, while the bright white areas have MTMF scores 
greater than 0.3 (or ~ 30% cover in that pixel). Ash MTMF scores 
gave the best indication of the actual fIre perimeter (Fig. 4a). 
There were few light pixels outside ofthe main fIre area, and those 
that were outside were more of a gray color indicating a lower 
MTMF score and a poor match to the ash endmember. Fig. 4b 
represented soil abundance, both of which were widespread 
throughout the entire image, not just within the fue perimeter. The 
scorch MTMF score image (Fig. 4c) was similar to the ash MTMF 
score image (Fig. 4a) in that the fIre perimeter is discernible, yet 
there are positive scorch MTMF scores outside the main fIre 
region. Scorch MTMF scores were positively correlated with litter 
and new litter, both of which were present outside of the fIre 
perimeter. Green vegetation abundance was clearly more 
prevalent outside of the fIre area (Fig. 4d). Green vegetation 
occurred within the fIre perimeter mostly along stream networks 

in valley bottoms. The outlines of some of the patches of ash 
visible in Fig. 4a can be seen both in Fig. 4c and d, which are 
remaining scorched and green vegetation in the transition areas 
between burned patches. The combination of individual compo­
nents provided a better representation ofthe effects of the fIre, as 
each of the individual components (except for ash) were found 
abundantly outside the main burned area. 

The RGB (red, green, blue) color composite (Fig. 3) created 
from layering individual unmixing results identified and 
quantifIed relative ash, green vegetation, and soil. Ash was 
indicated by red while exposed soil was a blue color, mixing 
the two resulted in a purple or magenta color (Fig. 3). Green 
vegetation was shown by the brightest green color and was 
typically mixed with scorched vegetation, shown by a much 
darker green color (Fig. 3). The fIre perimeter was highlighted 
on the northwest and southeast sides by extreme transitions 
from ash to green vegetation. Low and moderate severity areas 
were characterized by remaining green and scorched vegetation; 
these areas were typically heterogeneous and had mixed patches 
of both ash and soil (Fig. 3). 

6, Discussion 

6.1. Comparison ofunmixing results with ground measurements 

The identifIcation and quantifIcation of postfIre ground 
cover characteristics can be used to estimate immediate postfIre 
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effects and potential watershed response. Remotely sensed data 
can provide this information with varying degrees of accuracy. 
Although the correlations between the ground data and the 
MTMF scores were comparable to the correlations between the 
ground data and the NBR and dNBR values (Table 2), an 
MTMF score provided quantitative and more physically 
meaningful information than a dNBR value. The positive 
correlations between the ground data and the MTMF scores 
suggested that MTMF scores can detect vegetation, ash, and soil 
components on the ground with a modest degree of certainty 
(r= 0.5 to 0.7). The ability to identifY postfire ash is perhaps the 
most significant improvement over previous mapping methods. 
White ash is indicative ofcomplete surface vegetation combustion, 
and is most prevalent in the severely burned areas of a :fire 
(Landmann, 2003; Smith et aI., 2005). While there were significant 
correlations between the NBR and dNBR values with ash, these 
generally indicated that ash occurred in areas where the canopy 
vegetation had burned at high severity. The ability to map ash and 
char, or a mix of the two (gray ash), on the ground is an 
improvement over previous methods. Burned areas with little or 
no remaining vegetative cover may be targeted for postfire 
stabilization and rehabilitation, while areas with remaining ground 
cover (litter, new litter, or green vegetation) may recover naturally 
and more quickly and have little need for postfire treatments. 

Ideally, an MTMF score represents a physical percentage ofa 
material on the ground-surface, and a best-fit line of MTMF 
scores versus the ground data would have a slope close to 1.0. In 
this study, the MTMF scores were mostly lower than the values 
measured on the ground, which was mainly due to the partial­
unmixing algorithm; scores were not constrained to sum to unity. 
By the nature of the sampling design, the ground cover data did 
sum to unity. Ifthe target material (endmember) was not found in 
the pixel, the pixel was classified as background material 
(Boardman et al., 1995). The 183 ground plots were aggregated 
to 61 plot clusters that spanned the range ofburn severities found 
within the burned area. Thus, every endmember was not found in 
every pixel, which resulted in many zeros on the endmember 
scatter plots (Figs. 5 and 6). The soil MTMF scores were 
particularly low, which may be attributed to vegetation (both 
canopy and understory) occlusion of the soil surface (Fig. 5b). 
When ground data were collected, at least 10% new litter 
covered the soil surface on 40% of the plot clusters, but the 
percent soil exposed was estimated beneath the new litter cover. 
By the time the image was acquired, - 2 weeks after the end of 
field data collection, there was likely additional needlecast, 
further obstructing the soil surface imaging capabilities. 

Overall, the MTMF scores of each of the endmembers, ash, 
soil, scorched and green vegetation, were significantly related to 
and representative of the measured ground data. The hyper­
spectral data were acquired more than 1 month after the fire and 
during that time a few storms caused some runoff and erosion, 
which changed surface conditions by redistributing ash and 
litter. Stronger correlations may have been found if the ground 
data and image data were collected concurrently. In addition, the 
inability to precisely georegister the image made it necessary to 
compare the MTMF scores to aggregated plot cluster areas 
rather than single pixel or plot locations. 

Similar to the results in van Wagtendonk et al. (2004), the 
NBR values that were calculated using the hyperspectral data 
provided similar or slightly stronger correlations with the 
ground data than the dNBR values from Landsat data (Table 2). 
Hyperspectral NBR was significantly correlated to all of the 
major ground cover classes, each of which is indicative of the 
degree of bum severity. However, the difference between the 
Landsat-derived dNBR values and the hyperspectral NBR 
values was minimal, and would not justifY the greater 
acquisition cost or processing time ofhyperspectral data versus 
Landsat data. If only calculating NBR, the most significant 
benefit of hyperspectral data over Landsat data, would be the 
finer scale ofthe hyperspectral imagery. The hyperspectral NBR 
provides an estimate of burn severity at a 5 m scale rather than 
the 30 m scale available with Landsat imagery. This higher 
resolution would allow for more precise postfire stabilization 
and rehabilitation planning. 

6.2. Postfire maps and spatial distribution of ground cover 
components 

Burned areas with either dominant ash cover or mixed soil 
and ash would likely be classified as high soil burn severity. 
Dominant ash or soil cover indicates that little vegetation 
remains on the ground to protect the soil from wind or water, 
and as a consequence, the area has an increased potential for 
postfire runoff and erosion. In this study, ash was the 
endmember that best corresponded to the perimeter of the 
burned area and was the strongest indicator of high bum 
severity. Ash can vary in color from white to dark gray, 
depending on the combination of ash and char (Landmann, 
2003). Fires of different combustion efficiencies produce 
combustion residues of variable reflectance, from dark colored 
char, indicating incomplete combustion, to brighter ash, for 
efficient combustion (Trigg & Flasse, 2001). The ash end­
member used in this analysis was a gray ash endmember. The 
ash signature was selected from patches of pure pixels that 
appeared light gray (when the image was displayed in true 
color) with no remaining vegetation in the area. There are few 
published spectra of mixed ash; Landmann (2003) published a 
range of ash spectra from 9% white ash (89% black char) to 
100% white ash. Smith et al. (2005) also published black and 
white ash spectra. When these spectra were compared to the ash 
endmember used in this analysis, we confirmed our endmember 
was a mixture of white ash and black char, however, it is 
difficult to determine an approximate ratio of the two. 

The other typical indicator of high burn severity is newly 
exposed soil and rock. However, the Hayman Fire area is a dry, 
mixed ponderosa pine and Douglas-fir forest with sparse 
vegetation in many places as well as numerous rocky outcrops; 
thus, it is expected that soil and rock will be detected throughout 
the image regardless if the area burned. Therefore, ash was a 
better indicator of effects directly from the fire. Often, a 
combination of ash and soil can be used to evaluate the fire­
induced physical changes of the ground-surface and derive an 
indication of the fire's effect on the soil. Kokaly et al. (2006) 
made similar correlations between mapped postfire ash and soil 
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cover and the increased potential for runoff and erosion after the 
Cerro Grande Fire in New Mexico. Regions that are at the 
greatest risk oferosion are the areas where all vegetative ground 
cover has been removed by the fire, i.e., ash or soil. 

These results suggest that the ability to map discrete physical 
ground cover characteristics (ash, soil, scorched and green 
vegetation) using hyperspectral imagery surpasses the capabil­
ities of conventional multispectral bum severity mapping for 
identifying areas with and without remaining vegetation cover 
on the ground. Such a map would be useful in the time 
immediately following a fire to help evaluate and prescribe 
postfire erosion mitigation treatments. 

6.3. Hyperspectral data limitations 

Hyperspectral image data are useful to evaluate burned areas 
after wildfires. However, if this information is to be used to 
assist in postfire stabilization and rehabilitation decisions, then 
timely data acquisition and analysis are essential. Within this 
project, several operational issues became apparent: 1) because 
of logistical, weather, and safety concerns and the presence of 
smoke, image data are not easily acquired during or 
immediately after a fire; however, rapid image acquisition and 
data processing is essential if the image is to be used by postfire 
assessment teams (Orlemann et aI., 2002). 2) In areas requiring 
large coverage, efforts must be made to maintain data quality 
and consistency between flight lines (Aspinall et aI., 2002). 3) 
The large data files require that adequate personnel and 
computer time, data storage, and processing capabilities be 
available to produce a useful product. 4) And finally, the 
predictive power of any image-to-ground postfire assessment is 
limited ultimately by the presence of the overlying canopy. 
Ground-surface features are most clearly imaged when canopy 
cover is minimal, as the imaged vegetation fraction is 
proportional to the areal abundance of overstory canopy cover 
(Roberts et aI., 1993). 

All of these general limitations influenced this study. The 
analysis of the data required the generation of an individual 
reference library for each flight line. This cumbersome process 
resulted in a final mosaic that was not entirely "seamless." 
Therefore, it is likely that only a few of the endmember libraries 
may be useful on future fires in ponderosa pine and Douglas-fir 
forests on similar soils. Additional research is needed to develop 
an analytical procedure that can be used repetitively between 
flight lines and, ideally, between fires. However, the spectral 
endmembers types (ash, soil, scorched and green vegetation) 
that were used in the unmixing were representative of soil bum 
severity and were abundant on the ground plots within the 
image, and these same endmembers could be used to evaluate 
other burned areas. 

7. Conclusions 

The discrimination power of hyperspectral imagery allowed 
postfire materials to be characterized within a 5-m pixel and 
their physical abundance quantified for a corresponding ground 
location. The hyperspectral unmixing results identified the 

relative abundance of ground components (ash, soil, scorched 
and green vegetation, litter and new litter) that were determined 
to be important for evaluating soil bum severity. The measured 
ground value of each componentlendmember was significantly 
related to the corresponding spectral MTMF scores based on an 
assessment of 61 validation plots. Compared to Landsat data 
which is currently used for postfire assessment, the additional 
information provided by fine-scale hyperspectral imagery 
makes it possible to more accurately assess the effects of the 
fire on the soil surface. Quantifying ground cover character­
istics, rather than classifying NBR values derived from satellite 
imagery, provided a better evaluation of the physical condition 
of the soil surface. These surface fire effects, especially soil and 
ash cover and the lack of any remaining vegetative cover, are 
indicative of potential watershed responses. However, because 
of logistical and safety concerns and the presence of smoke, 
field and image data are not easily acquired during or 
immediately after a fire. At the present time, using hyperspectral 
imagery to evaluate burned areas has great potential, but further 
research is needed to make these data products available for 
postfire rapid response assessments. 
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