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 The capabilities of high resolution hyperspectral imagery were investigated to 

discriminate fine-scale postfire ground cover components after the 2002 Hayman Fire. 

Four spectral endmembers (ash, soil, scorched and green vegetation) were used in a 

Mixture Tuned Matched Filtering partial spectral unmixing process. From 72 validation 

field plots, the ground measures of each endmember were found to be significantly 

related to the corresponding matched filter (MF) scores. Vegetation measures were more 

strongly correlated to the MF scores (green vegetation [r=0.51, p-value <0.0001] and 

scorched vegetation [r=0.55, p-value <0.0001]) than surface cover measures (soil 

[r=0.40, p-value =0.0006] and ash [r=0.30, p-value =0.01]). However, soil surface effects 

were more accurately assessed with the fine-scale hyperspectral imagery than normalized 

burn ratio (NBR) values that are routinely used to create postfire burn severity maps. 

 

Keywords: remote sensing, Hayman Fire, Mixture Tuned Matched Filter, NBR 
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 For decades, rehabilitation crews have mapped burn severity after wildfires in order 

to assess fire effects on the landscape. Postfire effects vary depending upon the pre-fire 

environment and the intensity and duration of the fire in a given location (Ryan and 

Noste, 1983; DeBano et al., 1998; Ryan, 2002; Ice et al., 2004; van Wagtendonk et al., 

2004). Although a continuum of fire effects on the environment are evaluated to 

determine burn severity (Jain et al., 2004), it is generally mapped in discrete categories of 

low, moderate, and high, corresponding to the relative magnitude of change in the post-

wildfire appearance of vegetation, litter and soil. 

 Potential watershed responses to wildfire, such as increased runoff, peak flows, and 

erosion, typically increase with increasing soil burn severity (DeBano, 2000; Robichaud, 

2000; Moody and Martin, 2001; Moody et al., 2005). As a result, postfire assessment and 

mapping of soil burn severity is crucial for rehabilitation decision-making. Areas that 

exhibit characteristics of high soil burn severity, such as deep soil charring (gray or 

orange soil color) and complete loss of vegetative cover, are at increased risk of soil 

erosion (Parsons, 2003; Lewis et al., in press). However, it has been argued recently that 

standard burn severity indices primarily reflect postfire canopy vegetation conditions and 

show little indication of soil burn severity (van Wagtendonk et al., 2004). 

 Burned Area Reflectance Classification (BARC) maps (RSAC, 2005) are created 

from multispectral satellite imagery such as MODIS (Moderate Resolution Imaging 

Spectroradiometer), SPOT (Systeme pour l’Observation de la Terre), or Landsat 

Thematic Mapper (TM) or Enhanced Thematic Mapper Plus (ETM+). TM and ETM+ are 
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often used because of two bands, the near-infrared band (4) and a mid-infrared band (7), 

which have been shown to be sensitive to fire-induced changes to vegetation and soil 

(Key and Benson, 2002; van Wagtendonk et al., 2004). Green vegetation is most highly 

reflective in the near-infrared range of the electromagnetic spectrum, while exposed 

mineral soil and rock are most reflective in the mid-infrared region; fire typically reduces 

the amount of green vegetation while increasing soil exposure (Patterson and Yool, 

1998). A ratio of the reflectance values of the two bands, known as the Normalized Burn 

Ratio (NBR) provides an index of increasing burn severity (Key and Benson, 2002). A 

BARC map results from the classified NBR values: unburned, low, moderate or high 

burn severity (Parsons and Orlemann, 2002). 

 Digital elevation models and vegetation layers combined with classification rules are 

then used to create a preliminary Burned Area Emergency Rehabilitation (BAER) burn 

severity map (Parsons and Orlemann, 2002). Rehabilitation teams adjust this map based 

on observed severity conditions generally related to surface/soil conditions or vegetation 

mortality. Valuable time and resources are spent ground-truthing and correcting the 

preliminary BARC maps to produce an acceptable burn severity map (Hardwick et al., 

1997; Patterson and Yool, 1998; Parsons, 2003; Clark et al., 2003). Without these 

improved modifications regarding specific resources at risk, a burn severity map has the 

potential to be used for unintended purposes. In order to accurately prescribe soil 

stabilization treatments to high erosion-risk areas, a burn severity map must represent the 

fire’s effects on the soil surface. 
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 Newer hyperspectral sensors garner high-resolution data that can distinguish a range 

of features beyond the scope of broadband satellite imagery and show promise for 

improving the direct measurement of soil burn severity (van Wagtendonk et al., 2004). 

Airborne hyperspectral sensors provide imagery in narrow bands of reflectance spectra 

arranged contiguously from the visible through the short-wave infrared (SWIR) range of 

the electromagnetic (EM) spectrum, approximately 400–2500 nm. The spectral resolution 

typically averages 15 nm bandwidths and the ground resolution (pixel size) of these 

remotely sensed images is as fine as 1 to 5 m, over an area of many square kilometers 

(sensor and altitude specific). The multidimensional image data is often referred to as a 

data cube; layers of contiguous wavebands over an area of interest. Field spectrometers 

provide even higher resolution data (1–2 nm bandwidths and sub-meter spatial sampling) 

for the same spectral range, and are used to correlate the reflectance from ground-surface 

features to remotely sensed imagery (Clark et al., 2002). van Wagtendonk et al. (2004) 

calculated a band ratio similar to the NBR with AVIRIS (Airborne Visible and Infrared 

Imaging Spectrometer) hyperspectral bands and showed that the ratio between narrower 

wavebands may be more sensitive to fire effects than traditional broadband ratios. This 

work suggested the advantages of the higher spatial resolution and materials 

discrimination power of hyperspectral imagery for postfire scenes. 

 Typically, a single image pixel is the sum of the individual reflectance spectra from a 

mixture of surface materials (Theseira et al., 2003; Song, 2005). This image retains some 

characteristic features of the individual spectra from each of the component reflective 

materials; however, they are diminished. Often, characteristic spectral features for a 
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specific material, such as mineral content of soil or vegetation type, are narrow—in the 

range of ten(s) of nanometers. The high information content of spectra extracted from 

hyperspectral imagery makes it possible to ‘unmix’ the characteristic spectral signatures, 

known as endmembers, of the individual reflecting materials that comprise each pixel. 

Once the endmembers are known, linear unmixing of individual pixels can determine the 

fractional component spectra and, in turn, the fractional component of the materials 

(Adams et al., 1986; Roberts et al., 1993). 

 Determining the component spectra of an image pixel requires high-quality reference 

spectra. These reference spectra can be obtained from existing spectral libraries, collected 

in situ with a field spectrometer, or extracted from the hyperspectral image (Song, 2005). 

To compare the image endmembers to library reflectance spectra, the image spectra must 

be from the surface material with as little additional spectral ‘noise’ as possible. Remote 

sensing instruments measure all upwelling radiance that arrives at the sensor. The more 

important factors determining radiance are solar irradiance, two-way atmospheric 

transmittance, atmospheric scattering, and reflectance from the surface materials (Gao et 

al., 1993; Analytical Imaging and Geophysics LLC, 2002). Image radiance data are 

converted to reflectance by eliminating the solar and atmospheric effects described above 

from the radiance signal. However, it may still be difficult to obtain a ‘pure’ image 

endmember spectral signature for a given material (Song, 2005). 

 It has been suggested that most land cover scenes can be mapped as endmember 

combinations of green vegetation, non-photosynthetic vegetation, soil and shade (Roberts 

et al., 1993; Adams et al., 1995; Theseira et al., 2003; Song, 2005). A combination of 
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these four endmembers along with ash and/or char endmembers would account for the 

majority of the cover types of a typical postfire scene. Lewis et al. (in press) found that 

percent exposed mineral soil and litter cover were the most indicative factors when 

measuring soil burn severity in the field. The ability to distinguish postfire ground 

characteristics at the sub-pixel scale will provide a better indication of the fire’s effects 

on the soil and provide a more detailed and accurate assessment of the postfire 

conditions. 

 The goal of this study was to determine how remotely sensed hyperspectral data can 

be used to analyze and map postfire soil burn severity. The specific objectives were to: 1) 

use spectral mixture analysis of hyperspectral imagery to discriminate ground 

characteristics that are indicative of soil burn severity; 2) compare field measurements to 

the relative abundances of each endmember estimated from the spectral mixture analysis; 

and 3) develop a spectral library of soil burn severity endmembers to improve soil burn 

severity classification. 

 

2.0 Study Area 

 In the summer of 2002, the Hayman Fire burned more than 55,000 ha within the 

South Platte River drainage on the Front Range of the Rocky Mountains between Denver 

and Colorado Springs, CO (Graham, 2003) (Figure 1). The South Platte River flows from 

southwest to northeast through the burned area, with the Cheesman Reservoir (a 

municipal water source) at risk for contamination via runoff and erosion. The long-term 

average annual precipitation is 400 mm at the Cheesman weather station (elevation 2100 
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m) (Colorado Climate Center, 2004). The region is underlain by the granitic Pikes Peak 

batholith, with frequent rock outcrops. The main soil types are Sphinx and Legault series, 

which are coarse-textured sandy loams, gravelly sandy loams and clay loams (Cipra et 

al., 2003; Robichaud et al., 2003). The dominant tree species are ponderosa pine (Pinus 

ponderosa) and Douglas fir (Pseudotsuga menziesii) (Romme et al., 2003).  
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3.0 Data Acquisition 

3.1 Airborne Hyperspectral Imagery 

 In late August 2002, fourteen adjacent flight lines of hyperspectral imagery were 

collected over the Hayman Fire by ESSI (Earth Search Sciences Inc., Kalispell, MT)1 

with an airborne “whisk-broom” Probe I sensor. Each flight line, or data cube, covered a 

track ~28 km long and 2.5 km wide; corresponding to a 512 pixel-wide swath with each 

georeferenced square pixel equal to ~25 m2. The Probe I sensor received electromagnetic 

energy reflected from the surface in 128 contiguous spectral bands that spanned 432 to 

2512 nm; the spectral resolution of each band was between 14 and 20 nm. An on-board 

global positioning system (GPS) and inertial measurement unit acquired geolocation data 

that were matched in time with the spectral data collection. The location data, together 

with 30-m digital elevation models, were used to generate Input Geometry (IGM) files, 

which were used post-image analysis to georeference the results. 

 

 
1 The use of trade or firm names in this publication is for reader information and does not imply 

endorsement by the U.S. Department of Agriculture Forest Service of any product or service. 
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3.2 Field Spectrometer Data 166 
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 In July 2002, prior to the airborne acquisitions, field spectra were collected through 

cooperation with the U.S. Geological Survey, using their ASD (Analytical Spectral 

Devices, Boulder, CO) PRO-XR field spectroradiometer. The spectral range is 350 to 

2500 nm, with a 2 nm spectral resolution that yields 256 contiguous spectral bands, 

spanning nearly the same range of the EM spectrum as ESSI’s Probe I sensor used for the 

airborne imaging. The field spectrometer was calibrated against a spectralon panel 

immediately before field spectra were collected. The spectralon panel is a bright 

calibration target with well-documented reflectance in the 400 to 2500 nm region of the 

EM spectrum, and is used to convert relative reflectance to absolute reflectance. A 

spectralon absorption feature at 2130 nm was corrected before the field spectra were 

related to the image spectra. 

 Bright target ground-calibration field spectra were collected on the north shore of the 

Cheesman Reservoir, over bright, spectrally homogenous granitic rocks. The average 

spectrum was convolved to the bandwidth wavelengths of the Probe I sensor (Clark et al., 

2002). In addition, field spectra from high and low burn severity sites were collected on 

the surface and, using an aerial lift truck, at the canopy level. The atmospheric conditions 

in which the burn severity field spectra were collected were too different from those 

present during the airborne data acquisition to directly relate the two data sets. However, 

the spectral characteristics of selected field spectra were used as a guide to identify and 

select image endmembers to generate the reference spectral libraries. 
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3.3 Field measurements  188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

In July 2002, ‘ground truth’ validation data were collected at 183 sample plots with 

approximately 60 sample plots in each of the three burn severity classes (low, moderate, 

and high) as delineated by the BAER burn severity map. This burn severity map was 

created by the Remote Sensing Applications Center (RSAC) in 2002 from a SPOT image 

using the normalized burn ratio (NBR) (RSAC, 2005). East-west transects were located 

in visually homogenous areas at least 20 m from roads with approximately 9 sample plots 

per transect. Each sample plot consisted of a 4-m diameter circle in which 24 soil and 

vegetation variables were measured and a 7-m diameter circle in which tree condition and 

canopy measurements were made (details in Lewis et al., in press). The location of the 

center of each plot was recorded with a GPS device. Minor cover fractions, which were 

often grasses, forbs, shrubs, woody debris, stumps or rocks, were first estimated on each 

plot. A value of one percent was recorded if there was a trace of the material within the 

plot. The more common types of cover, which were exposed mineral soil, ash, litter and 

rock, were then estimated. The largest cover component was estimated last and the 

percent cover was forced to sum to 100%. The percent burned and degree of char (low, 

moderate or high) of each cover component was also estimated. For the purpose of 

correlating the ground measurements to the hyperspectral image, the vegetation 

constituents (both surface and canopy) were combined into three categories: green 

vegetation, non-photosynthetic vegetation and scorched vegetation. 

 

3.4 Atmospheric correction of hyperspectral data 
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 Atmospheric correction of the airborne hyperspectral imagery was accomplished 

using ACORN (Atmospheric CORrection Now) without any additional artifact 

suppression (Analytical Imaging and Geophysics, LLC, 2002). These non-smoothed 

reflectance data were further refined with a radiative transfer ground-controlled (RTGC) 

calibration. This involves calculating a multiplier from the differences between the mean 

image-reflectance spectrum over the area where bright target calibration field spectra 

were collected at Cheesman Reservoir and the corresponding average corrected field-

reflectance spectrum. The multiplier was then applied to the ACORN corrected image-

reflectance data. By applying the same multiplier, which is based on the atmospheric 

conditions present during the acquisition of flight line 7, to the other flight lines, 

variations in the atmosphere occurring due to the time differential between data 

acquisition were not all completely accounted for, but were believed to be negligible 

because all flight lines were acquired within a four hour time window (two hours on 

either side of local solar noon). 

 Two data cubes (flight lines 7 and 8) were initially delivered with missing ACORN-

generated reflectance data. Once these data were provided, a comparison of ACORN 

reflectance spectra of the same geographic location on adjacent flight lines indicated that 

the first set of ACORN reflectance data was processed with different input parameters 

from the second set (lines 7 and 8). Because these lines contain pixels corresponding to 

the Cheesman Reservoir ground calibration site, a separate RTGC calibration was 

performed and a different set of multipliers was applied. 
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4.0 Data Analysis 232 
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4.1 Image Analysis 

 Eleven water vapor bands near 1400 and 1900 nm and two other bands considered to 

be noisy were excluded from image analysis. The remaining 115 bands of RTGC-

corrected image reflectance data were further reduced with the ENVI (Environment for 

Visualizing Images) Minimum Noise Fraction (MNF) transformation to 20 MNF bands. 

The MNF transformation segregates the noise from the data resulting in a reduced 

number of bands containing the most meaningful information. Mixture Tuned Matched 

Filtering (MTMF) partial-unmixing algorithm (ENVI, 2004) was applied to the 20 MNF-

transformed bands on all 14 flight lines of image data (Boardman, 1998). A library of 

reference spectra representing ash, bare soil, and scorched and green vegetation was 

created for each data cube for use in the unmixing process. The reference spectra 

extracted from flight line 7 (includes the Cheesman Reservoir calibration site) are shown 

in Figure 2. The MTMF algorithm suppresses the spectra of materials not included in the 

library spectra by processing them as background information. 

 All the libraries, one generated for each flight line, were transformed to MNF space 

using the same statistics file derived from the MNF transformation of the corresponding 

image (ENVI, 2004). By creating a different library for each image, the residual 

atmospheric effects (after the RTGC calibration) were present in both the library and the 

corresponding image data, minimizing their effect on the unmixing process. The 

disadvantage of this method is that a slightly different library was used for each data 

cube, reducing the consistency from one flight line to the next. 
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 ENVI produces two gray-scale output images for each input spectrum: a matched 

filter score and an infeasibility value. The matched filter (MF) score, generally varying 

from 0 to 1, indicates how well the image pixel compares to the library reference 

spectrum and measures how abundant (ideally, a percentage) that material is in the image 

pixel. The infeasibility (IF) value shows how likely or unlikely the match is. In general, 

pixels that combine high MF scores with low IF values are a better match to the 

endmember spectrum (ENVI, 2004). Using a 2-D scatterplot of score versus infeasibility 

for the ash spectra (Figure 3), ENVI allows the user to interactively select pixels that best 

match the library reference spectrum. A mask was generated where high IF values 

occurred with high MF scores (i.e., false positives) to minimized the misidentification of 

ground components. 

 Once each data cube was unmixed, the resulting score and infeasibility images were 

georeferenced, and all the flight lines were combined into a single image mosaic. This 

image contained 8 continuous gray-scale bands: a score and IF band for each of the 

component spectra of ash, scorched vegetation, green vegetation, soil. The individual 

gray-scale fraction maps for each input endmember may be used individually or in any 

combination in a red-green-blue (RGB) color-composite image for simultaneous cover-

type detection. 

 

4.4 Statistical analysis of unmixing results relative to ground measurements 

 Detailed ground observations from 72 of the 183 sample plots (20 low, 26 moderate, 

and 26 high burn severity) were used to validate the image unmixing results. These 72 
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plots were near the center of flight lines where location errors were minimal (5 to 10 m or 

1 to 2 pixels) as confirmed from the location/proximity of nearby road intersections. 

Because plot locations do not always center in a pixel, a 3 x 3 pixel area consisting of the 

9 pixels adjacent pixels to the best-known plot location was analyzed for each plot. Each 

9-pixel (15-m square) window was assumed to have homogenous burn characteristics. 

The mean MF scores of each of the four endmembers used to unmix the image were 

extracted from each pixel window at the selected plot locations. Because the MTMF 

routine is a partial unmixing process, the sum of the MF scores at each pixel was almost 

always less than one. A negative MF score was re-scored as zero to indicate the absence 

of the material within the plot/pixel. 

Correlations between the measured ground values and the spectral abundance from 

the unmixing results (MF scores) were assessed for each endmember using the 

nonparametric Spearman test (SAS Institute Inc., 1999). Correlations were regarded as 

significant when p-value<0.05. Linear regressions with ground data as the independent 

variables and spectral data as the dependent variables were used to further examine the 

relationship between the ground and spectral data. For comparison to previous methods, 

both the MF scores from the spectral unmixing and the NBR values from the original 

BAER burn severity map were used as spectral data in the regressions. Adjusted R2 (Adj. 

R2) and root mean square error (RMSE) terms were reported from the regressions. 

The population distributions of both the ground data and the MF scores were skewed 

left as indicated by an abundance of zeros, therefore, non-parametric statistics were used 

to test the similarity of the data distributions (Devore, 2000). The Wilcoxon Rank Sum 
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test was used to test the statistical difference in location of the medians of the 

distributions of the ground data versus the MF scores for each endmember (Devore, 

2000). P-values>0.05 indicate no significant difference between median locations, 

however, since it is not statistically correct to accept the null hypothesis, 90% confidence 

intervals (lower and upper limits) were calculated to determine the statistical difference in 

medians between the two data sets. A kernel density estimator (bandwidth=1.06 times 

standard deviation) (Scott, 1992) was used to graphically compare the distributions of the 

ground data versus the MF scores for each input endmember. Kernel density estimators 

are nonparametric, smooth the data and facilitate the detection of characteristics such 

skewness, outliers and multi-modality. 

 

5.0 Results and Discussion 

5.1 Comparison of unmixing results with ground measurements 

 The MF scores were overall representative of the ground-based measures of ash, soil, 

scorched and green vegetation (Table 1), and were more indicative of the presence of a 

material, rather than the exact quantity. The presence of ash was spectrally detected 59% 

of the time, scorched and green vegetation were detected 72 and 71% of the time, 

respectively, and at least a trace of soil was spectrally detected 93% of the time. The 

positive relationship between the ground measurements and the MF scores indicated that 

as more of a material was measured on the ground, the MF scores increased as well. 

Thus, the means and medians of the measured ground values were generally higher than 

the corresponding MF scores.  
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 The significant correlations between ground measurements and MF scores of 

scorched (r=0.55) and green (r=0.51) vegetation from the unmixing results can be 

attributed to the relative ease of measuring the canopy vegetation with an airborne sensor 

(Table 2). Ash (r=0.29) and soil (r=0.40) were more weakly correlated to MF scores 

because vegetation often occludes the surface from the sensor. We observed positive 

correlations between ash and soil variables and negative correlations between these 

variables and green or scorched vegetation. Ash and soil are often found together in 

burned areas; ash alone (red) or ash and soil mixed (purple) are indicative of areas that 

were burned at high severity (Figure 4). Scorched and green vegetation are also likely to 

be found together, in areas burned either at moderate or low severity (Figure 4). 

 The results from the linear regressions (Table 3) show that the ground and MF scores 

for all four endmembers were related statistically. A high Adj. R2 value combined with a 

low RMSE term indicates a good fit between the two data sets. As was found with the 

correlation analysis, the strongest relationship between the ground data and MF scores 

was from the green vegetation (Adj. R2=0.63, RMSE=4), while ash had the weakest 

relationship (Adj. R2=0.08, RMSE=13). 

 When the ground data were regressed with the corresponding NBR values (Table 4), 

it was apparent these were weaker relationships than with the MF scores (Table 3). The 

statistically significant regression fits were between the NBR values and the ground 

measured soil (Adj. R2=0.19), scorched vegetation (Adj. R2=0.12) and green vegetation 

(Adj. R2=0.05) (Table 4). We anticipated the strong correspondence with soil and 
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expected a similar relationship for the green vegetation because of the constitution of the 

NBR values. 

 Stronger regression fits between the ground data and MF scores compared to the 

NBR values indicates that spectral unmixing improves the identification of postfire 

ground measures. There is a greater ability to predict all four ground measures with MF 

scores than with NBR values. The ability to identify postfire ash cover is perhaps the 

most significant improvement over previous mapping methods. Ash cover is indicative of 

complete vegetation combustion (Smith et al., 2005), and often the most severely burned 

areas of a fire. 

 The Wilcoxon Rank Sum distribution analysis showed that the population distribution 

of the ground measures of green vegetation (p-value=0.4) was not significantly different 

than the corresponding distribution of MF scores (Figure 5d). Small p-values for all other 

distributions indicate they were significantly different. The difference in the median 

green vegetation observed from the ground data (8%) and the median spectral abundance 

of green vegetation from the unmixing results (5%) is small (Table 1, Figure 5d). The 

distributions of ash ground and MF scores were statistically different, yet the kernel 

density estimator fit similar lines to the two data sets and the difference in medians was 

also small (3%). These results (Figure 5a) indicate greater similarities between the ash 

ground and MF scores that were weakly identified with the correlation or regression 

analysis. Thus, a range of analysis techniques allows for added information regarding the 

relationships between the two data sets.  
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 Overall, the relative spectral abundance (MF scores) of each of the endmembers, ash, 

soil, scorched and green vegetation, were well matched with the measured ground data. 

The hyperspectral data were acquired two months after the fire was controlled and during 

that time a few storms caused runoff and erosion, which changed surface conditions by 

redistributing ash and fine litter. Stronger relationships may have been found if the 

ground data and image data were collected at similar times. The lack of precise 

georegistration of the image also made it difficult to compare the field spectra and ground 

data to the exact pixels in the hyperspectral image. 

 

5.2 Postfire map 

 The RGB (red, green, blue) color composite (Figure 4) created from the unmixing 

results identifies and quantifies postfire ash cover, scorched vegetation and soil cover. 

The spectra used as endmembers can be used to relate the fire-induced physical changes 

of the surface which are indicative of the fire’s effect on the soil. Regions that are at the 

greatest risk of erosion are the areas where all vegetative ground cover has been removed 

by the fire, i.e., ash or soil cover. In Figure 4, ash is indicated by red while exposed soil is 

a blue color, mixing the two results in a purple or magenta color. Areas with either of 

these characteristics were classified as high burn severity; both are highlighted on Figure 

4. Scorched vegetation is green in Figure 4 and often occurs in transition areas around 

patches of complete vegetation combustion (ash). Moderate severity areas are 

characterized by scorched vegetation; however, they are also typically heterogeneous and 

usually have patches of both ash and green vegetation (Figure 4). 
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 Green vegetation is not shown directly on the postfire map because only three colors 

could be used and because there was little green vegetation remaining within the fire 

perimeter. The unburned areas are identifiable, however, just outside of the prominent 

region of ash and scorched vegetation (Figures 4). Low burn severity is more difficult to 

recognize than either high or moderate burn severity. Areas next to or surrounded by 

scorched vegetation that are not red or orange can be classified as low burn severity. 

These regions are mostly darker (brownish) in color and many have soil pixels (blue) 

mixed in. The natural vegetation in the region is sparse in many areas the granitic soil is 

easily seen between the trees.  

 Fire effects on the ground surface, such as changes in the surface vegetation and 

unconsumed litter, mineral soil and root conditions, are not always visible from above the 

canopy. Surface-level features may also be covered by residual ash, making it difficult 

for a non-ground-penetrating remote sensor to image the relevant data. For example, the 

amount of postfire litter, i.e., remaining fallen needles, woody debris, organic material, 

covering the mineral soil is an important indicator of burn severity and potential 

watershed response that is often covered by ash or masked by unburned tree canopy. 

Consequently, it is difficult to assess burn severity and other related factors, such as 

erosion potential, with a single, postfire imaging tool. However, the integration of several 

sources of data, including the results of reflectance spectral image analysis, may expedite 

and refine the information that guides postfire stabilization and rehabilitation efforts. 

 

5.3 Hyperspectral image data considerations 
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 The analytical results of this project indicate that hyperspectral image data are useful 

to evaluate forested areas after wildfire. However, if this information is to be used to 

assist in postfire rehabilitation decisions, then timely data acquisition and analysis are 

essential. Within this project, several operational issues became apparent: 1) Because of 

logistical and safety concerns and the presence of smoke, image data are not easily 

acquired immediately during a fire, however rapid response of image acquisition and data 

processing is essential if the image is to be used by BAER teams (Orlemann et al., 2002). 

2) In areas requiring large coverage, efforts must be made to maintain data quality and 

consistency between flight lines (Aspinall et al., 2002). 3) Metadata that documents the 

data processing steps is needed to detect problems with the data. 4) Because of the large 

data files involved, the data pre-processing and the format of the product data files needs 

to be specified. In addition to the general operational issues previously described, the 

analysis of the data for this study required the generation of an individual reference 

library for each flight line to deal with data inconsistencies resulting in a final mosaic that 

was not entirely “seamless.”  

 

6.0 Conclusions 

The materials discrimination power of hyperspectral imagery allowed us to 

characterize postfire materials represented in a pixel and quantify the physical abundance 

in a corresponding ground location. The unmixed image identified the relative abundance 

of four ground components (ash, soil, scorched and green vegetation) that we determined 

to be important for determining and classifying burn severity. The measured ground 
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value of each component/endmember was significantly related to the corresponding 

spectral MF scores based on an assessment of 72 validation field plots. The additional 

information provided by the fine scale hyperspectral imagery makes it possible to more 

accurately assess the effects of the fire on the soil surface as compared to NBR values 

derived from satellite imagery. These surface effects, especially ash and soil cover, are 

more indicative of potential watershed response. 

Unique libraries of reference spectra were used to unmix each of the data cubes; 

therefore, it is likely that the libraries themselves may only be useful on future fires in 

ponderosa pine and Douglas fir habitat on similar soils, thus limiting their usefulness. 

However, the spectral endmembers that were used in the unmixing were representative of 

burn severity and were abundant on the study plots within the image. These same 

endmembers should be used in the future to unmix images and classify burn severity. 

Additional research is needed to develop an analytical procedure that can be used 

repetitively between flight lines and, ideally, between fires. 
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Table 1. Means, medians, ranges and standard deviations of the measured ground cover 

and spectral values (MF scores) of each endmember classified by soil burn severity. 

 

Table 2. Correlation matrix of r-values between ground values and spectral values (MF 

scores). P-values are in parenthesis; bold correlations are significant at p<0.05; n=72. 

 

Table 3. Linear regression coefficients, ground values versus MF scores; MF score is the 

dependent variable (n=72). P-values are considered significant at p<0.05 and are in bold. 

 

Table 4. Linear regression coefficients, ground values versus NBR value; NBR value is 

the dependent variable (n=72). P-values are considered significant at p<0.05 and are in 

bold. 
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Figure 1. BAER burn severity map of Hayman Fire. Transect locations and an example 

plot layout are shown. 

 

Figure 2. Spectral reflectance plot of four endmembers that were used in the MTMF 

unmixing process. 

 

Figure 3. Scatterplot of ash matched filter (MF) scores versus ash infeasibility (IF) values 

from the results of the image unmixing. 

 

Figure 4. Red, green, blue (RGB) color composite of the unmixed image. Red pixels 

represent ash cover, green pixels represent scorched vegetation and blue pixels represent 

soil cover. High burn severity (A) is characterized by nearly complete ash coverage, 

while (B) is a mix of ash and soil. Moderate burn severity is characterized by scorched 

vegetation; low burn severity and unburned areas are characterized by green vegetation, 

within and outside of the fire perimeter, respectively. 

 

Figure 5. Kernel density estimates comparing the population distributions of the 

measured ground data and the spectral matched filter scores for each endmember: a) ash; 

b) soil; c) scorched vegetation; and d) green vegetation. Wilcoxon p-values<0.05 indicate 

significant differences between the two data sets; similar distribution shapes and small 

90% confidence interval differences between medians indicate similarities. 
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638 Table 1. 

  ––  Ground cover (%)  –– –––   MF scores   ––– 
 Mean Median Range Std. Mean Median Range Std.
Low soil burn  
severity (n=20) 

        

Ash cover 8 5 0–40 10 2 0 0–17 4 
Soil cover 20 10 1–70 22 2 2 0–7 2 

Scorched vegetation 56 56 0–100 35 23 16 5–55 16 
Green vegetation 25 29 0–52 15 13 16 0–24 8 

         
Moderate soil burn 
severity (n=26) 

        

Ash cover 13 10 0–50 12 13 4 0–67 17 
Soil cover 52 51 5–95 25 8 5 0–28 8 

Scorched vegetation 42 34 6–100 26 21 14 0–69 22 
Green vegetation 2 1 0–17 3 2 1 0–10 3 

         
High soil burn  
severity (n=26) 

        

Ash cover 19 20 0–70 17 15 12 0–43 13 
Soil cover 70 74 16–94 21 13 13 0–30 8 

Scorched vegetation 23 22 6–53 11 4 0 0–55 12 
Green vegetation 0 0 0–1 0 2 1 0–9 3 

         
All data (n=72)         

Ash cover 10 14 0–70 14 4 11 0–67 14 
Soil cover 53 50 1–95 30 5 8 0–30 8 

Scorched vegetation 29 39 0–100 28 8 15 0–69 19 
Green vegetation 1 8 0–52 13 3 5 0–24 7 
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640  Table 2. 

 Ash spectra Soil spectra Scorch spectra Green spectra 
Ash ground 0.30 (0.01) 0.05 (0.66) -0.21 (0.08) -0.21 (0.07) 
Soil ground 0.33 (0.005) 0.40 (0.0006) -0.50 (<0.0001) -0.38 (0.001) 
Scorch ground -0.18 (0.13) -0.17 (0.17) 0.55 (<0.0001) 0.14 (0.24) 
Green ground -0.48 (<0.0001) -0.40 (0.0004) 0.43 (0.0001) 0.51 (<0.0001) 
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642 Table 3. 

 RMSE (%) Adj. R2 p-value 
Ash cover 13 0.08 0.01 
Soil cover 7 0.22 <0.0001
Scorched vegetation 15 0.33 <0.0001
Green vegetation 4 0.63 <0.0001
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644 Table 4. 

 RMSE (%) Adj. R2 p-value 
Ash cover 214 0.01 0.78 
Soil cover 191 0.19 <0.0001
Scorched vegetation 199 0.12 0.002 
Green vegetation 208 0.05 0.03 
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