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Abstract 

Indicator species models may be a cost-effective approach to estimating species richness across large areas . Obtaining reliable dis­
tributional data for indicator species (and therefore reliable estimates of species richness) often requires longitudinal data, that is, 
surveys for indicator species repeated for several years or time steps. Maximum information must be extracted from such data. 
We used genetic algorithms and a Bayesian approach to compare the influence of presence/absence data and reporting rate data 
(the proportion of survey years in which a species was present) on models of species richness based on indicator species. Using data 
on birds and butterflies from the Great Basin (Nevada, USA), we evaluated models of species richness for one taxonomic group based 
on indicator species drawn from the same taxonomic group and from a different group. We also evaluated models of combined species 
richness of both taxonomic groups based on indicator species drawn from either group. We identified suites of species whose occur­
rence patterns explained as much as 70% of deviance in species richness of a different taxonomic group. Validation tests revealed 
strong correlations between observed and predicted species richness, with 83-100% of the observed values falling within the 95% cred­
ible intervals of the predictions. Whether reporting rate data improved the explanatory and predictive ability of cross-taxonomic 
models depended on the taxonomic group of the indicator species. The discrepancy in predictive ability was smaller for same-taxon 
models. Our methods provide a manager with the means to maximize the information obtained from longitudinal survey data. 
© 2005 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Protection of locations with a relatively large number 
of native species is thought to be an efficient way to 
maintain overall biodiversity, and species richness is 
used extensively as a criterion for development of con­
servation and management strategies (Scott et ai., 
1987; Myers et ai., 2000; Gladstone, 2002). The potential 
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contribution of estimates of species richness to prioritiz­
ing locations for conservation and other land uses, of 
course, increases with consideration of additional mea­
sures such as species composition, endemism, functional 
significance, and the severity of threats. Given that sur­
vey data for many regions are sparse and acquisition of 
new data is costly, surrogate-based approaches to esti­
mate species richness from data on land cover, land 
use, climate, and topography have become common 
(e.g., Mayer and Laudenslayer, 1988; Boyce and 
McDonald, 1999; Scott et ai., 2002). Workers also have 
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attempted to build functional relationships between spe­
cies richness and the occurrence of "indicator" species 
(Pearson, 1994; Scott, 1998; Mac Nally and Fleishman, 
2004), which we define as a small set of species with 
occurrence patterns that functionally are related to spe­
cies richness of a larger set of organisms. If validation 
data sets demonstrate that the functional models are 
effective (i.e., make accurate predictions), then, depend­
ing on the target system and the experience level of the 
individuals charged with conducting surveys, it may be 
far more feasible to measure occurrence of a small num­
ber of indicator species than to conduct comprehensive 
species inventories (Gustafsson, 2000; Cardosa et ai., 
2004; Tognelli, 2005). 

Statistically based methods are likely to be the most 
effective way to select potential indicator species, espe­
cially when compared with selection based on ad hoc cri­
teria such as a species' charisma or its protection status 
(Land res et ai., 1988; Andelman and Fagan, 2000; Mac 
Nally et aI., 2000). Our recent work suggested that spe­
cies from one taxonomic group might serve as indicators 
of the species richness of other taxonomic groups (Fle­
ishman et ai., in press). We used genetic algorithms to 
model individual and combined species richness of birds 
and butterflies as functions of occurrence patterns of 
indicator species drawn from either one or both of those 
groups. Our best-fitting models of bird species richness, 
butterfly species richness, and combined species richness 
explained ~ 80% of deviances (Fleishman et ai., in 
press), suggesting indicator species models may be a 
realistic approach to derive estimates of species richness. 
These models in turn can be used to inform strategies for 
allocation of multiple land uses and prioritization of 
management actions. 

Surrogate-based approaches involve a trade-off be­
tween the quality of information provided by the surro­
gate measure and the cost of obtaining that information . 
For indicator species models, as for all statistical and 
modeling approaches, both the quality of species rich­
ness predictions and the cost of obtaining those predic­
tions will depend on the type and quality of data used to 
build and apply models, including the extent to which 
workers have accounted for potential sources of error. 
These sources include, but are not limited to, grain 
and extent of sampling (Wilson and Shmida, 1984; Rick­
lefs and Schluter, 1993), unequal and imperfect proba­
bilities of detection (Nichols et ai., 1998; MacKenzie 
et ai., 2002, 2003; Tyre et aI., 2003; Wintle et ai., 
2004), and spatial autocorrelation (Legendre, 1993; Dale 
et ai., 2002). On the whole, we agree with Hutto and 
Young, 2003, 903 that in many cases, credibility "[u]lti­
mately . . . comes down to common-sense evaluation of 
the possible sources of bias in the process of science." 

Not only do species have imperfect probabilities of 
detection when present, even with rigorous sampling, 
but species are not always present at sites they some­

times occupy. Therefore, "snapshots" (single surveys) 
of species distributions in principle may be inadequate 
to build and apply models of species richness . Through­
out this manuscript, we use the term "single surveys" to 
mean sites have been visited only within a single year or 
meaningful time step (e.g., breeding season), even if, as 
in our data, the sites have been visited mUltiple times 
within a time step. We define "species richness" as the 
total number of species that occupy a site across multi­
ple years or time steps. Thus, in this paper, we primarily 
are concerned with potential failure to account for tem­
poral turnover in species composition, although our 
methods also apply to data that are subject to other 
sources of detection error. In arid landscapes, species 
composition of a site may differ considerably among 
years even when species richness is relatively consistent 
(Johnson, 1995; Brown et aI., 2001; Gutzwiller and Bar­
row, 2001). Snapshot data increase the risk of obtaining 
false negatives, or recording species as being absent from 
sites they sometimes do occupy, which potentially limits 
their usefulness in species richness models. False nega­
tives in model building data reduce the quality of models 
because estimates of species richness (the response vari­
able) are inaccurate and the distribution of potential 
indicator species (the predictor variables) is poorly 
characterized. 

False negatives also may cause prediction errors 
when models built from reliable distributional data are 
applied to predict species richness of new sites. Conclud­
ing that indicator species are absent from sites that they 
sometimes do occupy will produce inaccurate predic­
tions of species richness. The risk of obtaining one or 
more false negatives increases as the number of indicator 
species that occupy a site increases. For example, as­
sume four indicator species are required to estimate spe­
cies richness (four is the minimum number that 
Fleishman et ai. (in press) found to be effective), and 
each of those species is present at suitable sites, on aver­
age, only two out of every three surveys (i .e., the site-le­
vel probability of a false-negative in one survey is 0.33). 
In a single survey, the probability of observing all four 
indicator species at a site that they all sometimes occupy 
would be just 0.2 , on average, assuming that species' 
occurrence probabilities are independent of each other. 
Because the false-negative risk will be greatest at sites 
that support the greatest number of indicator species, 
erroneous estimates of species richness may be more 
likely at sites for which such errors could have the most 
serious ecological or economic consequences. 

The risk of false negatives is greatly reduced by the 
use of longitudinal data, that is, data collected by sur­
veying sites repeatedly (i.e., multiple visits in each of 
two or more years or time steps) . In the example above, 
the probability of observing all four indicator species 
would increase from 0.2 to 0.63, 0.86, and 0.95 if one 
were to use two, three, or four surveys, respectively. Gi­
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ven that distributions of many species are temporally 
variable, and that detection rates in one-off surveys 
rarely are perfect even when species are present, longitu­
dinal data generally will be preferable, and often essen­
tial, for predicting species richness from indicator 
species models. In our study system, for example, de­
spite implementation of methods that reliably detect 
species in years that they are present, more than half 
of both bird species and butterfly species have false-neg­
ative rates >0.5 (i.e., most species occupy suitable sites in 
fewer than half of all years). Unfortunately, the few taxa 
with low false-negative rates are widespread species that 
have limited value as indicators of species richness, 

Collection of longitudinal data to build and apply 
models of species richness on the basis of indicator spe­
cies will be cost effective provided repeated surveys for 
a few indicator species are less costly than comprehensive 
surveys of all species. The ability of observers to identify 
simultaneously all species (often >60) compared to 
searching for just a small subset of species, of course, will 
vary geographically and by taxon. Longitudinal indica­
tor species data are likely to be more cost-effective when 
species richness of multiple taxonomic groups needs to 
be estimated. It generally will be less costly to conduct 
mUltiple surveys for a small number of indicator species 
from a single taxonomic group (e.g., birds) than to sur­
vey comprehensively all species from many taxonomic 
groups (e.g., birds, mammals, and beetles) even once. Sit­
uations also may arise in which one taxonomic group is 
surveyed intensively over mUltiple years, but managers 
also wish to estimate species richness of other taxonomic 
groups. In those cases, the distributions of some species 
from the intensively surveyed taxon may provide useful 
information about species richness of other taxonomic 
groups, even if species richness itself of those groups is 
not correlated (Fleishman et al., in press). 

Longitudinal data can be used to calculate either a 
binary occurrence value (present in any year[s] or ab­
sent) or a "reporting rate" value. We define reporting 
rate as the proportion of years that a species was found 
to be present at a given site (number of present years/ 
number of survey years). Reporting rate provides differ­
ent information to a measure of species presence based 
on mUltiple years of data and, potentially, offers greater 
resolution in model building. We asked whether report­
ing rates of indicator species provide useful information 
about site-level species richness. That is, are models of 
species richness improved by the use of reporting rate 
data instead of presence/absence data for indicator spe­
cies? If multiple surveys are required to obtain reliable 
presence/absence data, then collecting reporting rate 
data incurs no additional expense, so any improvement 
in species richness models warrants use of reporting rate 
data. It is possible that the improvement in model per­
formance using reporting rate data may be sufficient to 
justify their use even if reliable presence/absence data 

can be obtained more cheaply. This will be the case 
when reporting rates of indicator species provide good 
estimates of species richness of mUltiple taxonomic 
groups, but presence/absence data on the indicator spe­
cies, or other surrogate measures of species richness, do 
not. 

Accordingly, we examined whether the fit of models 
of species richness based on indicator species was af­
fected by the use of occurrence data compared with 
reporting rate data to build the models. We evaluated 
models of species richness for one taxonomic group 
based on indicator species drawn from the same taxo­
nomic group and on indicator species drawn from a dif­
ferent taxonomic group. We also evaluated models of 
combined species richness of both taxonomic groups 
based on indicator species drawn from either one of 
the groups. Where possible, we validated the predictive 
ability of our models using independent data collected 
from locations not used to build the models . Last, we 
consider the ecological characteristics of selected indica­
tor species to gain insight into why the selected species 
might convey information about species richness. 

2. Methods 

2.1. Field methods 

Data for our analyses were collected in three adjacent 
mountain ranges in the central Great Basin that have 
similar biogeographic and human land-use histories, 
the Shoshone Mountains (1850 km2

, approximate 
north-south boundaries 39°14' to 38°57'), Toiyabe 
Range (3100 km2

, 39°54' to 38°30'), and Toquima 
Range (1750 km2

, 39°17' to 38°29') (Lander and Nye 
counties, NV, USA). Our data collection incorporated 
established techniques that detect species presence reli­
ably and permit assessment of distributional trends (Pol­
lard and Yates, 1993; Pullin, 1995; Bibby et al., 2000; 
Buckland et al., 2001 ; Siegel et al., 2001). These methods 
have been described in detail and tested for sampling 
adequacy (e.g., Dobkin and Wilcox, 1986; Dobkin and 
Rich, 1998; Fleishman et al., 1998, 2000, 2001; Mac 
Nally et al., 2004). Based on those tests, we assume that 
detection error was relatively low, although not zero. 
Thus, a substantial proportion of the false-negatives in 
our data arise primarily from temporal variations in site 
occupancy rather than from failure to detect species 
when present. From 1996 to 2003, inventories for butter­
flies were conducted in a total of 195 sites, and invento­
ries for birds were conducted in 84 of those sites. We 
recorded 74 species of breeding birds and 65 species of 
resident butterflies (a complete list is available from 
E.F.). Site-level species richness was calculated as the to­
tal number of species recorded in the site across all 
years . Site-level species richness ranged from 5 to 34 
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for birds (mean 17.3) and from 3 to 51 for butterflies 
(mean 24.9). Site areas ranged from 1.5 to 44.4 ha. At 
the site level, area explained little variance in species 
richness «3%) of either taxonomic group (Mac Nally 
et aI., 2003). 

2.2. Model building 

We modelled the site-level species richness of birds 
(henceforth, bird species richness) and butterflies (but­
terfly species richness) as functions of the occurrences 
(i.e., presence or absence based on multiple years of 
data) or the reporting rates (proportion of years that a 
given site was surveyed in which a certain species was 
present) of small subsets of "indicator" species. We 
modelled species richness of each taxon as a function 
of indicator species from either the same taxon (same­
taxon models) or a different taxon (cross-taxon models). 
We also modelled the combined species richness of both 
taxonomic groups as functions of indicator species 
drawn from each taxon. For each response-predictor 
(species richness-indicator group) combination, we 
examined three types of models: models using pres­
ence/absence data for all indicator species (presence/ab­
sence models), models using reporting rate data for all 
indicator species (reporting rate models), and models 
using presence/absence data for some indicator species 
and reporting rate data for others (mixed models). 

All models with butterflies as indicator species were 
built with data from the Shoshone and Toquima ranges 
because we do not presently have reporting rate data for 
butterflies in the Toiyabe Range; each Toiyabe site was 
surveyed for butterflies in only one year. Although we 
previously used data from all three mountain ranges 
to build butterfly presence/absence models (Fleishman 
et aI. , in press), in order to compare presence/absence 
and reporting rate models directly, those models must 
be based on the same data. All models with bird indica­
tor species were built using data collected with equal sur­
vey effort from all three mountain ranges; models using 
presence/absence data for bird indicator species are the 
same as those presented in Fleishman et al. (in press) . 

To find practically useful models, we limited the num­
ber of indicator species for each model to six, which is 
<10% of the total number of species in each taxonomic 
group. We used Poisson regression to model species 
richness because Poisson error structures are likely to 
be most appropriate for non-negative " counts" data, 
such as number of species (McCullagh and NeIder, 
1989). 

2.2.1. Selection of indicator species 
With large sets of predictor variables, many of the 

screening approaches used to identify the "best" subset 
of variables are suspect statistically (Mac Nally, 2000). 
Information criteria, such as Bayes information crite­

rion (BIC, Schwarz, 1978), have been recommended to 
identify the most efficient model(s) (Kass and Raftery, 
1995; Mac Nally, 2000). BIC represents a compromise 
between model fit (ability to explain observed deviance 
in the response variable) and model complexity (number 
of predictor variables). BIC is calculated as 
-2 x log(likelihood) + 10g(N) x Q, where N is the num­
ber of observations and Q is the number of model 
parameters. BIC imposes a larger penalty on additional 
terms than other common criteria (e.g., Akaike's Infor­
mation Criterion; Rawlings et al., 1998) and is, there­
fore, more likely to find practical, simpler indicator 
species models. Each additional indicator species in­
creases the risk of false-negatives, and potentially in­
creases the effort or expertise needed to conduct 
surveys. Therefore, only indicator species that substan­
tially improve model predictions should be included. 
Usually, all possible models are fitted and the model 
with the lowest BIC value is retained (i.e., an exhaustive 
search of model space). However, because we had such a 
large number of potential predictor variables (potential 
indicator species), we could not undertake exhaustive 
searches, even though we considered only models with 
:(6 predictors. Instead, we used a genetic algorithm to 
search for very good, but not demonstrably the most 
efficient, models (Fleishman et aI. , in press). 

Genetic algorithms are iterative search procedures 
that emulate the process of natural selection. They are 
useful for large combinatoric problems and have been 
used successfully to select input variables in neural net­
works (Jefferson et aI., 1997) and logistic regression 
models (Vinterbo and Ohno-Machado, 1999). Genetic 
algorithms iteratively refine an initial "population" of 
potential solutions, usually generated randomly. The va­
lue of the function to be optimized - in our case, BIC for 
each model - is used as a measure of individual "fit­
ness, " with fitter individuals (models) given a greater 
probability of "reproducing." Genetic operations such 
as crossover and mutation are emulated and applied to 
a proportion of individuals in each generation. Charac­
teristics of individuals with high fitness (viz., low BIC) 
are retained and recombined until very good solutions 
are found. 

We used a genetic algorithm, implemented with the R 
statistical programming software (Sekhon and Mebane, 
1998; R Development Core Team, 2003), to search for 
Poisson models with low BIC values for each combina­
tion of response and predictor variables. First, an initial 
popUlation of 1000 random models (individual "gen­
omes") was generated. Each model in the population 
was represented by a vector of k digits, where k is the 
number of candidate species (in our case, k = 74 bird 
species, 65 butterfly species, or 139 species total), which 
indicated the species included in the model. For pres­
ence/absence and reporting rate models, we used a bin­
ary code in which species were either included in the 
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model (I) or excluded from the model (0). For mixed 
models, we used a ternary code in which species were in­
cluded as reporting rate data (I), included as presence/ 
absence data (2), or excluded (0). 

In each generation, the BIC was calculated for every 
model in the population, and fitness ranks were assigned 
accordingly (fitness increases as BIC decreases). The 
model in each generation with the lowest BIC was prop­
agated into the next generation. All other models were 
replaced with the results of genetic operators (cloning, 
crossover, mutation) applied to parents selected, with 
replacement, from the entire population. The probabil­
ity that a model was be selected to be a parent increased 
as its fitness increased (i.e., as BIC decreased). After 25 
generations with no improvement in fitness (i.e., no 
reduction in the minimum BIC value for all models), 
the genetic algorithm was terminated and the model 
with the lowest BIC (the solution) was reported. For 
each response-predictor combination, we obtained solu­
tions from ten random starts of the genetic algorithm, 
and selected the solution with the lowest BIC value as 
the final model. For each model, ten runs of the genetic 
algorithm produced four or fewer unique solutions. 
Those solutions invariably shared several indicator spe­
cies, and the best solution occurred at least four times, 
and often ten times, in the ten runs. We are therefore 
confident that the selected final models included the 
most effective indicator species. 

2.2.2. Model fitting 
We computed model parameters for the best genetic 

algorithm solutions with the WinBUGS software for 
Bayesian inference (version 1.4, Spigelhalter et aI. , 
2003). The model used was 

10g(J1;) = 

Q 

eta + L akX j" ( I ) 
k =1 

Y, --- Poisson (J1 j) , 

where the as are the regression coefficients to be esti­
mated (an intercept [eto) and coefficients for each of the 
Q indicator species); J1j is the estimated mean species 
richness at site i given the state (X;) of each of the Qindi­
cator species; and Yj is the observed species richness at 
site i, which is assumed to be distributed (---) as a Pois­
son variable with mean J1j. 

Bayesian methods incorporate prior knowledge 
about parameter values and produce posterior probabil­
ity distributions for each parameter. If one has virtually 
no prior knowledge about a parameter's value, then it is 
appropriate to use a "non-informative" prior distribu­
tion for that parameter - a normal distribution with 
high variance is typical for regression coefficients ­
which means that the posterior probability distributions 
are dictated by the newly collected data (Lee, 1989). 

(For a general overview of Bayesian statistical methods 
and associated termjnology, see Bergerud and Reed, 
1998 and references therein .) We initially gave the as 
non-informative normal priors [et; --- normal(J1; = 0, 
af = 1000)). WinBUGS uses Markov chain Monte 
Carlo methods to estimate model parameters iteratively 
by repeatedly "sampling" from distributions specified in 
the model (Gilks et aI., 1996). Initial parameter values 
for Markov chain Monte Carlo were generated ran­
domly. Probability distributions for parameters were al­
lowed to settle ("burn in") over 1000 iterations before 
posterior parameter distributions were built for another 
10000 iterations . 

We used the posterior probability distributions of 
estimated model coefficients to evaluate whether selected 
indicator species made an important contribution to the 
prediction of species richness. If ~ 90% of the posterior 
probability distribution of a species' coefficient was 
either greater than zero (positive effect) or less than zero 
(negative effect), we deemed that species to have an 
important effect and retained it in the model. All species 
selected in final genetic algorithm solutions met this cri­
terion and were therefore retained in fitted models. 

2.3. Model validation 

2.3.1. Internal validation 
We used bootstrapping to estimate the expected pre­

dictive performance of models. Bootstrapping is a 
method of internal validation that provides near-unbi­
ased estimates of predictive accuracy wi th relatively 
low variance (Efron and Tibshirani, 1993, 1997; Harrell 
et aI., 1996; Wintle et al., in press) . Importantly, boot­
strapping does not involve data splitting, so the entire 
dataset is used for model development. For each model, 
we calculated a "na·ive" estimate of apparent predictive 
performance (Rapparent) by correlating predicted and ob­
served species richness for the model building data. We 
then generated 100 bootstrap samples by randomly 
sampling n sites with replacement from the model build­
ing data, where n is the number of sites in the model 
building data. The model building process, including 
variable selection, was repeated for each bootstrap sam­
ple to produce 100 "bootstrap models." 

We computed the apparent predictive performance 
(Rboot) of each bootstrap model by correlating (Spear­
man coefficient) predicted and observed species richness 
for the corresponding model building data (bootstrap 
sample). We then tested the predictive performance of 
each bootstrap model against the original data, denot­
ing the correlation between observed and predicted data 
as Roriginal. The average difference between Rboot and 
Roriginal for all bootstrap models is an estimate of the 
average optimism (0) in the apparent (naive) perfor­
mance statistic. The original model's performance statis­
tic (Rapparent) therefore was adjusted by subtracting the 
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average optimism (Rexpected = Rappareot - 0). Rexpected is 
a near-unbiased estimate of the expected external pre­
dictive performance (i.e., the expected correlation be­
tween observed and predicted species richness) of the 
original model (Harrell et al., 1996). 

2.3.2. External validation 
The most stringent test of any model is external val­

idation. Predictions of species richness based on any 
functional relationship, including occurrence of indica­
tor species, should be confronted with independent data 
that were not used to build the models (Landres et al., 
1988; Mac Nally et al., 2000; Fleishman et ai" 2003; 
Mac Nally and Fleishman, 2004). Because multiple-year 
surveys are required to calculate reporting rate, and are 
preferable for estimating presence/absence, a full evalu­
ation of the models developed here is not yet possible. 
However, by combining recently collected data with 
data collected in the 1980s (Dobkin and Wilcox, 1986) 
we were able to perform a preliminary examination of 
the bird indicator species models. Twenty-three sites in 
the Toiyabe Range were surveyed for birds in 1983 
and/or 1984 (Dobkin and Wilcox, 1986). These sites also 
were surveyed for butterflies in 1995 or 1996, and were 
re-surveyed for birds in 2004. Combining these data pro­
duced a validation data set comprising multiple-year 
presence/absence and reporting rate data for all bird 
species, measures of bird species richness, and measures 
of butterfly species richness. We used these validation 
data to assess the performance of bird indicator species 
models. The validations necessarily assume that the 
site-level species richness of birds and butterflies was rel­
atively constant throughout the period 1983-2004 (Fle­
ishman and Mac Nally, 2003). We could not conduct 
external validation for butterfly indicator species models 
because we do not yet have new multiple-year survey 
dat'!. for butterflies (surveys anticipated during the next 
few years will rectify this deficiency). 

We used WinBUGS to produce a posterior distribu­
tion of predicted species richness at each validation site 
given the state (presence/absence or reporting rate as 
appropriate) of the indicator species at that site and 
the posterior distributions of the model parameters. 
We then examined the correlation between observed 
and predicted (median of the posterior distribution) spe­
cies richness, and determined the number of sites for 
which the observed species richness fell within the 95% 
credible intervals of predicted species richness. For mod­
els of bird species richness, we also examined potential 
bias in model predictions (systematic overestimation or 
underestimation of species richness) by calculating the 
mean difference between predicted and observed values 
for each model. We denote this value as mean bias, B. 
We estimated bootstrap confidence intervals (Cl) for B 
by calculating the 2.5 and 97.5 percentiles of the distri­
bution of mean bias values, which in turn were calcu­

lated from 1000 bootstrap samples of the validation 
data and corresponding model predictions. 

Our measures of butterfly species richness for the val­
idation sites were based on a single year of data for each 
site . Therefore, we almost certainly underestimated the 
multiple-year species richness of those sites. However, 
because there is a strong linear relationship between sin­
gle-year species richness of butterflies and multiple-year 
species richness of butterflies (average Spearman corre­
lation for 1996-2003 across all mountain ranges = 0.80), 
the rank correlations between predicted and observed 
species richness of butterflies should provide a reason­
able indication of model performance. We did not at­
tempt to infer multiple-year species richness of 
butterflies based on the single-year data because the 
functional form of the relationship differs between years 
and mountain ranges, and data were insufficient to 
parameterize the relationship for validation sites in the 
Toiyabe Range. Accordingly, we were unable to quan­
tify bias for models of butterfly species richness or com­
bined species richness. 

2.3.3. Use of single-year survey data 
We investigated whether single-year (presence/ab­

sence) data for indicator species, when entered into 
"good" models parameterized with multiple-year data, 
might generate reliable predictions of multiple-year spe­
cies richness. We entered single-year presence/absence 
data for bird indicator species at the validation sites into 
the appropriate presence/absence models for bird species 
richness, butterfly species richness, and combined spe­
cies richness. We therefore produced three separate sets 
of predictions from each model based on the occurrence 
of the bird indicator species in 1983, 1984 and 2004. We 
then compared each set of predictions with observed 
species richness as described in Section 2.3.2. 

3. Results 

3.1 . Birds as indicator species 

3.1.1. Cross-taxon models 
Models of butterfly species richness with bird indica­

tor species were improved by using reporting rate data 
rather than presence/absence data for at least some indi­
cator species. The best reporting rate model (64% devi­
ance explained) and mixed model (65%) explained 
substantially more deviance in butterfly species richness 
than the best presence/absence model (55%) (Fig. 1). 
Bootstrapped estimates of expected predictive perfor­
mance (Rexpected) also were higher for the reporting rate 
model (0.64) and mixed model (0.65) than the presence/ 
absence model (0.58). The best reporting rate, presence/ 
absence, and mixed models included six indicator spe­
cies, the maximum number we allowed (Table 1). 
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3.1.2. Same-taxon models 
Reporting rates of some bird species also provided 

information about bird species richness (Fig. 1). The 
best models of bird species richness with presence/ab­
sence data and mixed data each included six bird indi­
cator species and explained 82% of the deviance in 
bird species richness (Table 1). The best reporting rate 
model of bird species richness similarly included six 
indicator species and explained 78% of deviance 
(Table 1). Expected predictive performance was high 
for all models , but was greatest for the presence/ab­
sence model (Rexpected = 0.86), followed by the mixed 
model (Rexpected = 0.83) and the reporting rate model 
(Rexpected = 0.81). 

3.1.3. Combined-richness models 
The best presence/absence, reporting rate, and 

mixed models of combined species richness of birds 
and butterflies with bird indicators explained 72%, 
71 %, and 76% of deviance, respectively (for brevity, 
figures and tables are not presented here; complete 
information is available from E.F.). Expected predic­
tive performance was higher for the presence/absence 
model (Rexpected = 0.81) than the reporting rate and 
mixed models (Rexpected = 0.76 for both). 

3.1.4. Identity of bird indicator species 
Across all models, eleven bird species were selected as 

indicators of butterfly species richness. Five bird indica­
tors were selected as presence/absence terms only, four 

as reporting rate terms only, and two as either pres­
ence/absence and reporting rate terms in different mod­
els. Eleven bird species were selected as indicators of 
bird species richness, three as presence/absence terms 
only, four as reporting rate terms only, and four as both 
presence/absence and reporting rate terms. Two bird 
indicator species, Western Tanager (Piranga ludoviciana) 
and Lark Sparrow (Chondestes grammacus), were in­
cluded in models of both butterfly species richness and 
bird species richness. Western Tanager was included as 
a presence/absence term only, whereas Lark Sparrow 
was included as a reporting rate term only. 

3.2. Birds as indicator species: external validation 

3.2.1. Cross-taxon models 
For models of butterfly species richness with bird indi­

cator species, observed species richness was more strongly 
correlated with predicted species richness values from the 
reporting rate and mixed models (Rspearman = 0.49 and 
0.42, respectively) than with predictions from the pres­
ence/absence model (Rspeannan = 0.35). Note, however, 
that the low correlation coefficient for the presence/ab­
sence model was largely caused by one site for which but­
terfly species richness was greatly over-estimated 
(predicted = 35, actual = 10). Omitting that site resulted 
in a correlation coefficient of0.59 for the presence/absence 
model. Observed values ofspecies richness fell within pre­
dicted 95% credible intervals for 19 of the 23 validation 
sites (83%) for all three models (Fig. 2). 
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Table I 
Parameter values (mean and standard deviation) for Poisson-regression models of species richness of butterflies (butterfly S) and birds (b ird S) based 
on presence/absence patterns and reporting rates of bird indicator species 

eme o.Variable (indicator species) Mean 
n6 

SD 

Butterfly S with bird indicators: presence/absence data 
55% deviance explained, BICb 

:: 599 
Intercept 2.943 18.97 0.046 
Rock Wren Salpincles obsoletus 0.158 1.17 0.045 
Western Tanager Piranga ludoviciana 0.204 1.23 0.044 
Yellow Warbler Dendroica petechia 0.316 1.37 0.044 
Black-headed Grosbeak Pheucticus melanocephalus 0.154 1.1 7 0.046 
Chukar Alectoris chukar 0.255 1.29 0.062 
Western Meadowlark Sturnella neglecta -0.312 0.73 0.079 

Butterfly S with bird indicators: reporting rate data 
64% deviance explained, BIC :: 569 

Intercept 3.350 28.50 0.036 
Blue-gray Gnatcatcher Polioptila caerulea -0.370 0.88-0.69 0.086 
Yellow Warbler 0.293 1.10-1.34 0.058 
Black-headed Grosbeak 0.324 1.11 - 1.38 0.086 
Black-throated Sparrow Amphispiza bilineaca -0.679 0.80-0.51 0.159 
Plumbeous Vireo Vireo plumbeus -0.425 0.87-0.65 0.113 
Lark Sparrow Chondestes grammacus -1.348 0.64-0.26 0.222 

Butterfly S with bird indicators: mixed model (presence/absence and reporting rate data ) 
65% deviance explained, BIC :: 567 

Intercept 3.224 25.13 0.039 
Western Tanager (presence/absence) 0.226 125 0.043 
Blue-gray Gnatcatcher (reporting rate) -0.370 0.89-0.69 0.083 
Yellow Warbler (reporting rate) 0.424 1.1 5-1.53 0.056 
Plumbeous Vireo (reporting rate) -0.354 0.89- 0.70 0.114 
Lark Sparrow (reporting rate) -1.479 0.61-0.23 0.261 
Northern Harrier Circus cyaneus (presence/absence) 0.588 1.80 0.155 

Bird S with bird indicators: presence/absence data 
82% deviance explained, BIC :: 453 

Intercept 2.158 8.65 0.075 
Black-throated gray Warbler Dendroica nigrescens 0.218 1.24 0.067 
MacGillivray's Warbler Oporornis philadelphia 0.230 1.26 0.072 
Western Scrub-jay Aphelocoma cali/ornica 0.252 1.29 0.061 
Red-shafted Flicker Colaptes auratus 0.187 1.21 0.064 
Western Tanager 0.141 J.l 5 0.056 
Fox Sparrow Passerella iliaca 0.290 1.34 0.077 

Bird S with bird indicators: reporting rate data 
78% deviance explained, BIC :: 461 

Intercept 2.248 9.47 0.067 
Black-throated Gray Warbler 0.322 1.11-1.38 0.073 
American Robin Turdus migratorius 0.251 1.09-129 0.091 
Western Scrub-jay 0.251 1.09-1.29 0.094 
Red-shafted Flicker 0.225 1.08-1.25 0.093 
Warbling Vireo Vireo gi/vus 0.266 1.09-1.30 0.089 
Fox Sparrow 0.430 1.15-1.54 0.183 

Bird S with bird indicators: mixed model (p resence/absence and reporting rate data) 
82% deviance explained, BIC :: 452 

Intercept 2.308 10.05 0.075 
Spotted Towhee Pipilo maculatus (reporting rate) 0.211 1.07-1.23 0089 
MacGillivray's Warbler (presence/absence) 0.280 1.32 0.057 
Western Scrub-jay (presence/absence) 0.172 1.19 0.059 
Red-shafted Flicker (presence/absence) 0.219 1.24 0.060 
Hermit Thrush Catharus guttatus (presence/absence) 0.172 1.19 0.069 
Lark Sparrow (reporting rate) -0.755 0.78-0.47 0.304 

a The exponentiated mean (emean) of the intercept term is the expected species richness in the absence of all indica tor species. For indicator species, 
em• an is a multiplicat ive factor by which the presence of that species affects the predicted species richness. For presence/absence data, the presence of a 
species always result in factor of emean x I. For reporting rate data, the presence of a species results in a fac tor of ~can x repocting rate . We ca lculated the 
minimum (ernean x 0.33) and maximum (emcan 

x I) factor values for an indica to r species present at a site surveyed for three yea rs. 
b Bayesian information criterion. 
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Fig. 2. Predicted versus observed species richness at external validation sites for models with bird indicator species. Top row (left to right): models of 
butterfly species richness based on presence/a bsence data, reporting rate data, or both presence/a bsence and reporting rate da ta, for bird indicator 
species. Bottom row (left to right): models of bird species richness based on presence/absence data , reporting rate data, or both presence/absence and 
reporting rate data, for bird indicator species. Dashed lines show 95% credible intervals for predicted species richness. 

3.2.2. Same-taxon models 3.2.4. Use of single-year data 
For models of bird species richness with bird indica­ The predictions of presence/absence models with bird 

tors, observed species richness was more strongly corre­ indicator species proved unreliable when based on sin­
lated with predicted values of species richness from the gle-year presence/absence data for the indicator species. 
presence/absence model (Rspearman = 0.75) than with pre­ Predictions were moderately successful when based on 
dictions from the reporting rate model (Rspearman = 0.57) 2004 data (Table 2), but not as successful as predictions 
or mixed model (Rspearman = 0.61). Observed values of that were based on multiple-year presence/absence data 
species richness fell within the predicted 95% credible (see Sections 3.2.1, 3.2.2, 3.2.3). Predictions of multiple­
intervals for 22 (96%), 21 (91%), and 23 (100%) of the year species richness based on single-year data from 
23 validation sites for the presence/absence, reporting 1983 or 1984 were poor, especially compared with pre­
rate, and mixed models, respectively (Fig. 2). The pres­ dictions based on multiple-year presence/absence data 
ence/absence model slightly underestimated bird species (Table 2). Of the potential reasons for the discrepancy 
richness (B = -1.7, Cl = -3.4 to 0.4), but the reporting in success among individual years, differences in short­
rate model (B = - 1.0, Cl = - 2. 7 to 1.0) and mixed mod­ term to moderate-term trends in precipitation are 
el (B = -0.5, Cl = -2.1 to 1.1) showed no consistent bias among the most likely. Annual precipitation in 1983 
(Fig. 2). and 1984 was well above the mean for the 117-year per­

iod of record (70% and 30%, respectively), and approx­
3.2.3. Combined-richness models imately double the annual precipitation during the 

For models of combined species richness based on bird period of drought that extended from 1999 to 2004 
indicators, correlations between observed and predicted (Western Regional Climate Center, 2005). Predictions 
values of species richness for validation sites were highest made on the basis of single-year data consistently under­
for the presence/absence model (Rspearman = 0.67), fol­ estimated bird species richness (Table 2), demonstrating 
lowed by the mixed model (Rspearman = 0.57) and report­ the effect of false-negatives on species richness estimates. 
ing rate model (Rspearman = 0.33). Observed values of 
species richness fell within predicted 95% credible inter­ 3.2.5. Ex ternal versus internal validation 
vals for 20 (87%),19 (83%) and 18 (78%) of the 23 valida­ The bootstrapping method of internal validation ap­
tion sites for the presence/absence, reporting rate, and peared to be useful for ranking models in terms of likely 
mixed models, respectively. predictive accuracy. For each model type (presence/ 
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Table 2 
Parameter values (mean and standard deviation) for Poisson-regression models of species richness of birds (bird S) and butterflies (butterfly S) based 
on presence/absence patterns and reporting rates of butterfly indicator species 

emean~Variable (indicator species) Mean SD 

Bird S wilh bu{(erjly indicalors: presence/absence dala 
70% deviance explained, BICb =294 

Intercept 1.51/ 4.53 0.467 
Hesperia comma 1.082 2.95 0.470 
Papilio rUlulus 0.191 1.21 0.074 
Papilio multicaudalus 0.415 1.51 0.070 
PapiliO zelicaon -0.884 0.41 0.355 

Bird S IVilh bu{(erjly indicarors: reporting rale dala 
55% deviance explained, BIC =298 

Intercept 2.504 12.23 0.070 
lncisalia eryphon 0.256 1.09-1.29 0.102 
Papilio mU/licaudalus 0.465 1.17-1.59 0.088 

Bird S wilh bu{(erjly indicarors: mixed model {presence/absence and reporting rale dalat 
56% deviance explained, BIC =296 

Intercept 1.537 4.65 0.416 
Hesperia comma (presence/absence) 1.125 3.08 0.418 
Papilio mullicaudalus (reporting rate) 0.524 1.19-1.69 0.083 

Bu{(erjly S wiliJ bu{(erjly indicalors: presence/absence dala 
83% deviance explained, BIC =542 

Intercept 1.937 6.94 0.125 
Hesperia juba 0.547 1.73 0.124 
Coenonympha ,ul/ia 0.194 1.21 0.069 
Speyeria zerene 0.162 1.18 0.053 
Icaricia /upini 0.357 1.43 0.053 
Chlosyne acaslus 0.204 1.23 0.046 
Phyciodes pu/che//a 0.235 1.27 0.050 

BUllerjly S wilh bu{(erjly indicarors: reporling rale dara 
79% deviance explained, BIC =557 

Intercept 2.316 10.14 0.096 
Lycaeides melissa 0.336 1.12-1.40 0.104 
Papilio rUlu/us 0.257 1.09-1.29 0.073 
Euch/oe ausonides 0.589 1.21-1.80 0.082 
Chlosyne acaSIllS 0.302 1.10-1.35 0.050 
Lycaena heleronea 0.381 1.13-1.46 0.048 
Phyciodes pulchella 0.408 1.14-1.50 0.084 

Bu{(erjly S wilh bu{(erjly indicalors: mixed model (presence/absence and reporting rale dara) 
81% deviance explained, BIC =548 

Intercept 2.501 12.19 0.054 
Limenilis weidemeyerii (presence/absence) 0.190 1.21 0.051 
Ochlodes sylvanoides (prese nce/absence) 0.169 1.18 0.056 
Euch/oe ausonides (reporting rate) 0.367 1.13-1.44 0.077 
Chlosyne acaslus (reporting rate) 0.237 1.08-1.27 0.054 
Lycaena heleronea (reporting rate) 0.344 1.12-1.41 0.050 
Phyciodes pulchella (presence/absence) 0.272 1.31 0.049 

a The exponentiated mean (e'"can) of the intercept term is the expected species richness in the absence of all indicator species . For indicator species, 
mean e is a multiplicative factor by which the presence of that species affects the predicted species richness. 
b Bayesian in formation criterion. 

For presence/absence data, the presence of a species always results in factor of emeanx 1 For reporting rate data, the presence ofa species results in 
a factor of emeanxreportingrale We calculated the minimum (emeanxO.33) and maximum (erne• nx I) factor values for an indicator species present at a site 

surveyed for three years. 

absence, reporting rate, or mixed), the model with the tion sites, correlation coefficients may be much influ­
highest Rexpected value had the highest actual correlation enced by a few outliers. Rexpected values assume that 
between observed and expected species richness at vali­ sample size is equal to the original data (i.e., 84 sites 
dation sites. Actual correlations consistently were lower for same-taxon bird models) , for which outliers (e.g., 
than expected values, but this partly may reflect a small points outside of the 95% credible intervals) would have 
sample size for the validation data. With only 23 valida- little influence. For most models, correlations of pre­

http:emeanxO.33
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dicted and observed richness excluding observed points 
outside of the predicted 95% credible intervals were 
within 10% of the Rexpecled values. 

3.3. Butterflies as indicator species 

3.3.1. Cross-taxon models 
The best presence/absence model explained 70% of 

the deviance in bird species richness (Fig. 3) and in­
cluded four indicator species (Table 3). The best report­
ing rate and mixed models explained 55% and 56% of 
deviance in bird species richness, respectively, but each 
included only two indicator species (Table 3). Rexpected 

values were higher for the presence/absence model 
(0.68) than the reporting rate model (0.65) and mixed 
model (0.61). 

It is difficult to compare directly the usefulness of 
reporting rate and presence/absence data for butterfly 
indicator species from the above models because the 
reporting rate and mixed models included two indicator 

species, whereas the presence/absence model included 
four indicator species. BIC represents a compromise be­
tween model fit (ability to explain observed deviance in 
the response variable) and model complexity (number of 
predictor variables). However, in general, we would ex­
pect models with a greater number of variables to ex­
plain a greater percentage of deviance. Therefore, to 
ensure that our comparison of presence/absence data 
versus reporting rate data was "fair," we examined 
whether models with an equal number of variables have 
equivalent explanatory power. 

To compare the use of presence/absence and report­
ing rate data in models with the same number of butter­
fly indicator species, we ran the genetic algorithm so that 
residual deviance (rather than BIC) was minimized, with 
a maximum of six indicator species. The solutions to 
these searches were extensions of the lowest BIC models: 
they included all indicator species from the lowest-BIC 
models . The presence/absence, reporting rate, and mixed 
models with six indicator species explained 73%, 66%, 
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Fig. 3. Fitted versus observed species richness for models with butterfly indicator species. Top row (left to right): models ofbutterfiy species richness 
based on presence/absence data, reporting rate data, or both presence/absence and reporting rate data, for butterfly indicator species. Bottom row 
(left to right) : models of bird species richness based on presence/absence data, reporting rate data , or both presence/absence and reporting ra te data , 
for butterfly ind icator species. Dashed lines show 95% credible intervals for fitted species richness. 

Table 3 
Success of models of species richness of birds (bird S), butterflies (butterfly S), and combined species richness (combined S) for the combined years 
1983, 1984, and 2004 based on single-year presence/absence data from 1983, 1984, or 2004 for bird indicator species 

Response variable 1983 1984 2004 

R B R B R B 

Bird S 0.2 -6.8 (-9.2, ­ 45) 0.33 -5 .9 (-8.1, -3.6) 0.65 -6.6 (-8.1, -5.0) 
Butterfly S 0.43 NC 0.02 NC 0.35 NC 
Combined S 0.42 NC 0.37 NC 0.55 NC 

S, species richness; R, Spearman correlation coefficient between predicted and observed species richness; B, mean bias. Lower and upper bounds of 
95% bootstrap confidence intervals for B values are in parentheses. NC, not calculated, see Section 2.3.2. 
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and 74% of deviance in bird species richness, respec­
tively. Rexpected values were 0.69, 0.62, and 0.69 for the 
presence/absence, reporting rate, and mixed models, 
respectively. Thus, we found that our application of 
BIC appeared to have selected the best models of each 
type (presence/absence or reporting rate) in terms of pre­
dictive capacity; our original comparison of reporting 
rate models (two indicator species) and presence/absence 
models (four indicator species) probably was fair. 

3.3.2. Same-taxon models 
The best presence/absence, reporting rate, and mixed 

models of butterfly species richness with butterfly, indica­
tors explained 83%, 79%, and 81 % of deviance, respec­
tively (Fig. 3). Rexpected values were highest for the 
presence/absence and mixed models (both 0.86), but still 
high for the reporting rate model (0.82). Each model in­
cluded six indicator species (Table 2). 

3.3.3. Combined-richness models 
The best presence/absence, reporting rate, and mixed 

models of combined species richness of birds and butter­
flies with butterfly indicators explained 82%, 78%, and 
83% of deviance, respectively (figures and tables not pre­
sented; complete information is available from E.F.). 
Rexpected values were marginally higher for the mixed 
model (0.79) than the presence/absence model (0.78) 
and reporting rate model (0.76). The presence/absence 
and reporting rate models each included six indicator 
species. The mixed model included five indicator species. 

3.3.4. Identity of butterfly indicator species 
Considering lowest BIC models only, five butterfly 

species were selected as indicators of bird species rich­
ness. Three butterfly indicator species were selected as 
presence/absence terms only, one as a reporting rate 
term only, and one as both presence/absence and report­
ing rate terms. The six-species (lowest residual deviance) 
models of bird species richness included an additional 
three butterfly species as presence/absence terms only 
and one species as a reporting rate term only. Twelve 
butterfly species were selected as indicators of butterfly 
species richness, five as presence/absence terms only, 
four as reporting rate terms only, and two as both pres­
ence/absence and reporting rate terms. Only one butter­
fly species, Papilio rutulus, was included in models of 
both bird species richness (as a presence/absence term) 
and butterfly species richness (as a reporting rate term). 

4. Discussion 

Evaluation of the comparative usefulness of different 
types of data, including but not limited to data on pres­
ence/absence and reporting rate, stimulates research in 
ecology and its application (e.g., Loiselle et aI., 2003; 

Tyre et aI., 2003) and is highly relevant for managers 
concerned with either balancing the cost of data collec­
tion with the information content of those data or deter­
mining how to obtain the greatest value from data with 
a fixed acquisition cost. Our work suggests that it is pos­
sible to identify small suites of species whose occurrence 
patterns can be used to predict species richness of either 
the same taxonomic group, a different taxonomic group, 
or combined species richness of two taxonomic groups. 
Importantly, preliminary external validation tests re­
vealed strong correlations between observed species 
richness and predicted species richness based on occur­
rence patterns of indicator species, with 83% (all cross­
taxon models) to 100% (the best same-taxon model) of 
the observed values falling within the 95% credible inter­
vals of the predictions. 

Our framework for model building and validation is 
applicable to any ecosystem and may be a useful tool 
for estimating cross-taxonomic species richness at scales 
pertinent to conservation and land management. In 
other circumstances (e.g., different locations, different 
taxonomic groups, different ecological and socioeco­
nomic considerations) there inevitably will be a different 
answer to the question of whether a given threshold of 
explanatory or predictive accuracy (e.g., 70%) is suffi­
cient. Each real-world situation must be considered to 
determine the optimum or acceptable tradeoff between 
the ability and need to make predictions and the accu­
racy of those predictions. 

4.1. Temporal variation in species occurrence 

Whether reporting rate data improved the explana­
tory ability of cross-taxonomic models depended on 
the taxonomic group from which indicator species were 
drawn. Models of butterfly species richness with bird 
indicators based on reporting rate data for some or all 
indicator species explained approximately 10% more of 
the total deviance in species richness than models based 
on presence/absence data. The outcome of external val­
idation tests was consistent with these results; observed 
species richness of butterflies was more strongly corre­
lated with predicted species richness values from the 
reporting rate and mixed models with birds as indicators 
than with predictions from the presence/absence model. 
In contrast, models of bird species richness with butter­
fly indicators were not improved, in terms of model fit or 
expected predictive accuracy, by incorporation of 
reporting rate data. 

Why might reporting rate data for birds contain 
information not conveyed by presence/absence data? 
One possible explanation is that for birds, which appear 
to have relatively specialized resource requirements in 
our study system (Mac Nally et aI., 2004), reporting 
rates are correlated with local habitat quality for both 
birds and butterflies. For species of birds that are limited 
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by nesting sites, prey, or other environmental condi­
tions, intermediate reporting rates may be associated 
with temporal variability in resource availability. Inte­
grated over several years, variation in resource availabil­
ity for birds might be related to species richness of 
terrestrial invertebrates either directly (e.g., relatively 
low abundance or density of invertebrates could lead 
to fluctuation in occurrence of birds that are obligate 
or facultative insectivores) or indirectly (e.g., both birds 
and butterflies may be responding to the mean or vari­
ance in magnitude and duration of primary productivity 
(McLaughlin et aI. , 2002)). Alternatively, at least in 
some situations, intermediate reporting rates of ,birds 
might be associated with sites with constant but interme­
diate habitat quality for birds that cannot support cer­
tain species of butterflies, such as sites with trees and 
shrubs suitable for nesting but with few grasses and 
forbs (i.e., few larval hostplants and adult nectar sources 
for butterflies) in the understory. 

The discrepancy in predictive ability of reporting rate 
data and presence/absence data was smaller for same­
taxon models than for cross-taxon models, but pres­
ence/absence data were more effective. For models of 
both bird species richness and butterfly species richness 
with same-taxon indicators, presence/absence-only mod­
els explained more deviance and had higher expected 
predictive accuracy than reporting rate-only models. 
The results of external validation tests similarly sug­
gested that models of bird species richness based on 
same-taxon presence/absence data have greater predic­
tive ability than models based on reporting rate data. 

For models of combined species richness, models that 
included a combination of presence/absence and report­
ing rate terms explained more deviance than either pres­
ence/absence-only or reporting rate-only models, 
regardless of whether birds or butterflies were used as 
indicator species. In validation tests, however, the pres­
ence/absence model with bird indicators had better ex­
pected and actual predictive ability than the mixed 
model. Similarly, internal validation results suggested 
that the presence/absence model with bird indicators 
would have predictive accuracy similar to the mixed 
model. 

4.2. Characteristics of indicator species 

As we noted previously (Fleishman et a\., in press), 
the best models of species richness appeared to be those 
in which indicator species collectively represented the 
variety of land-cover associations in the taxonomic 
group(s) for which they conveyed information about 
species richness. Vegetation structure and the distribu­
tion of particular species of trees are believed to be ma­
jor influences on occurrence patterns of birds in general 
(MacArthur et aI., 1966; Anderson and Shugart, 1974; 
Rotenberry and Wiens, 1980) and in our study system 

(Mac NaUy et aI., 2004). Occurrence patterns of most 
butterflies, by contrast, are influenced by the distribu­
tion of certain larval hostplants and by the availability 
of nectar, which often is correlated with the availability 
of running or standing water (Wilcox et aI., 1986; Pullin, 
1995; Mac Nally et aI., 2004). For example, in the 
reporting rate model of butterfly species richness with 
birds as indicators, species with positive model coeffi­
cients were associated with riparian vegetation (Yellow 
Warbler [Dendroica petechia]) and mixed riparian and 
upland trees and shrubs (Black-headed Grosbeak [Phe­
ucticus melanocephalus]), whereas species with negative 
model coefficients were associated with relatively arid 
shrublands (Blue-gray Gnatcatcher [Polioptila caerulea], 
Lark sparrow [c. grammacus]), arid, rocky areas (Black­
throated Sparrow [Amphispiza bilineata]), and arid 
woodlands with limited understory (Plumbeous Vireo 
[Vireo plumbeus]) . 

Similarly, the presence/absence model of species rich­
ness of birds with butterflies as indicators included spe­
cies whose larvae feed on a full range of vegetation 
growth forms (Fleishman et aI., 1997). Species whose 
larval host plants typically are found in land cover types 
that are used by both birds and butterflies, such as 
grasses (fed on by Hesperia comma) and riparian trees 
(Papilio rutulus, P. multicaudatus), had positive model 
coefficients, whereas a species that feeds on forbs on 
open slopes (Papilio zelicaon) had a negative model 
coefficien t. 

For same-taxon models, it may appear superficially 
that any (sufficiently large) subset of species could serve 
as indicator species because any given species is more 
likely to be present at species-rich sites than at species­
poor sites. But this assumes that species are distributed 
randomly across landscapes, which is not the case. 
Suites of indicator species selected with the genetic algo­
rithm explained, on average, twice as much deviance in 
species richness as randomly selected suites of the same 
number of species, and had far superior predictive accu­
racy (many arbitrary subsets had no predictive capacity, 
J.T., unpublished data). Thus, the selected indicator spe­
cies are not mere random "sub-samples" of the distribu­
tions of all species from that taxonomic group. Rather, 
the distribution of indicator species appeared to reflect 
the distribution of resources and other underlying fac­
tors that influence species richness. We believe that this 
is an important result ecologically and warrants the use 
of methods such as those we have described in this 
paper. 

4.3. Applications 

Any practical tool for ecological assessment must be 
both scientifically reliable and cost-effective. We found 
that the explanatory ability of species-richness models 
differed when indica tor species were selected using 
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reporting rate data or presence/absence data . Presence/ 
absence data were more effective than reporting rate or 
mixed data for same-taxon models, and appeared to 
be at least as effective as reporting rate or mixed data 
for combined richness models. For the cross-taxonomic 
models, however, the comparative value of the two types 
of data depended on the taxonomic group from which 
indicator species were drawn. Preliminary external vali­
dation tests were consistent with these observations, 
suggesting that in a given situation, the success rate of 
species-richness predictions is likely to differ when indi­
cator species are selected using reporting rate data or 
occurrence data. , 

Because it is difficult to characterize the "true" distri­
butions of most species in one-off surveys, and poor pre­
dictions frequently result from false-negatives in 
indicator species data, longitudinal data often will be 
essential for indicator species models. False negatives 
that result from imperfect detections rather than true 
variation in species occurrence will have similar effects. 
Our methods provide a manager with the means to eval­
uate how to maximize the accuracy of models using that 
longitudinal data. Our work also potentially provides 
the means to evaluate the degree to which additional 
accuracy of models gained by greater survey effort is 
warranted against the added cost for situations in which 
reliable presence/absence data can be obtained with sin­
gle surveys. This tradeoff should always be the driving 
agent in such circumstances: is an extra 10% accuracy 
derived from reporting rate-based models, for example, 
worth the added expense of conducting three years' of 
surveys compared with one year? These questions can­
not be answered without conducting the type of analyses 
that we present here. For example, our results suggest 
that reporting rate data are not needed for same-taxon 
or combined-richness models of bird and butterfly spe­
cies richness in this system. So if reliable occurrence data 
could be obtained with single surveys (or with survey 
methods that did not require revisiting sites after all 
indicator species had been observed), there would be lit­
tle justification for repeat surveys to estimate species 
richness using those models. 

Efforts to identify surrogate-based approaches to esti­
mate species richness and other measures of ecological 
status are popular because inventory data for many re­
gions are insufficient to inform conservation and land­
use planning decisions directly. Accordingly, a method 
for selecting indicator species that requires relatively 
complete species data might appear to be anything but 
a shortcut. However, our methods select indicator spe­
cies potentially applicable across an extensive landscape 
on the basis of data that, while representative of the lar­
ger system, are collected from a small fraction of the to­
tal land area . Across planning landscapes of tens to 
hundreds of thousands of square kilometers, we believe 
the method is a viable approach to deriving estimates of 

species richness that can inform strategies for allocation 
of multiple land uses, including conservation. The Great 
Basin, for example, covers more than 400,000 km2 and 
includes approximately 350 major mountain ranges. If 
indicator species identified on the basis of data collected 
from sections of three mountain ranges can be used to 
predict species richness at any location even within the 
30,000 km2 biogeographic subregion in which our work 
was centered (Austin and Murphy, 1987), we believe the 
method can serve as an effective and practical tool for 
prioritizing management activities. 

We reiterate that our approach is designed to deal 
with species richness and we note that specific efforts 
probably will be needed to deal with the presence or 
number of rare species (Lawler et aI. , 2003). Rare species 
need not occur in locations with greatest species rich­
ness, prevalence of individual species often varies across 
a landscape, and low prevalence rates may not equate to 
extinction risk (Fleishman et a!., 2003). In our system, 
no species of bird or butterfly is listed as threatened or 
endangered, and there are no species-level endemics. 
Moreover, the relatively uncommon resources (such as 
plants with patchy distributions) used by some species 
of birds and butterflies with erratic occurrences in space 
and time are not threatened directly by current land 
uses. 

Survey data for many regions are insufficient to in­
form preservation and management decisions directly. 
When applied to planning landscapes of tens or hun­
dreds of thousands of square kilometers, we believe 
our methods represent a realistic approach to deriving 
estimates of species richness that can inform strategies 
for allocation of multiple land uses, including conserva­
tion . It appears that the data required to build models 
potentially applicable across those extensive landscapes, 
while representative of the larger system, may be col­
lected from a small fraction of the total land area. In 
addition, by exploring why particular species convey 
information about a larger biota, we may gain insight 
into underlying mechanisms that influence species rich­
ness and the structure and composition of ecological 
assemblages. 
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