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ABSTRACT 

We fitted spatial autocorrelation functions to distance-based data for assemblages of 

birds and for three attributes of birds' habitats at 140 locations, separated by up to 

65 km, i~ the Great Basin (Nevada, USA). The three habitat characteristics were 

taxonomic composition of the vegetation, physical structure of the vegetation, and 

a measure of primary productivity, the normalized difference vegetation index, 

estimated from satellite imagery. We found that a spherical model was the best fit to 

data for avifaunal composition, vegetation composition, and primary productivity, 

but the distance at which spatial correlation effectively was zero differed substantially 

among data sets (c. 30 km for birds, 20 km for vegetation composition, and 60 km 
for primary productivity) . A power-law function was the best fit to data for vegetation 

structure, indicating that the structure of vegetation differed by similar amounts 

irrespective of distance between locations (up to the maximum distance measured). 

Our results suggested that the spatial structure of bird assemblages is more similar to 

vegetation composition than to either vegetation structure or primary productivity, 

but is autocorrelated over larger distances. We believe that the greater mobility of 

birds compared with plants may be responsible for this difference. 
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Bayesian analysis, biodiversity patterns, dissimilarity measures, Great Basin, 
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INTRODUCTION 

Ecologists arguably often have been remiss in not quantifying 

spatial (and temporal) relationships among both response and 

predictor variables. As a result, conventional statistical inferences 

have less reliability and power (Legendre, 1993; Selmi & 
Boulinier, 2001; Dale et al., 2002; although see Diniz-Filho et al., 

2003). Spatial structure often is treated as a nuisance that must 

be accounted for to improve the statistical properties of tests. 

Nevertheless, spatial structure potentially offers many insights 

into ecological patterns and processes (Tobin, 2004). Because many 

distributional patterns are not spatially independent, it is useful 

to identify the lag (difference in space) over which a pattern is 

autocorrelated and to characterize the functional form of the 

autocorrelation. If a response variable and a potential predictor 

variable have similar patterns of autocorrelation, it may be reason­
able to infer either a causal relationship or that both variables 

are responding similarly to another phenomenon (Matern, 

1986; Diniz-Filho et al., 2003; Tobin, 2004). Note that the term 

'autocorrelation' can be used to describe a spatial pattern, as we 

do in this paper, or to refer to the generation of an autocorrelated 

spatial pattern by endogenous processes related to a variable of 

interest (e.g. correlations in species abundances that are linked to 

dispersal) . 

Birds are used widely as targets for management strategies, 

ecological assessments, and monitoring programs. They are 

biologically and taxonomically well known, relatively easy to study 

and monitor and are responsive to natural and anthropogenic 

environmental change. Many studies have addressed spatial 

autocorrelation in species richness, abundance, or assemblage 

composition of birds (e.g. Linder et al.. 2000; Koenig. 2001; 

Fairbanks et al., 2002). At relatively large spatial extents, measure­

ments associated with mechanisms potentially driving the spatial 

distribution of species often have been derived from geographi­

cal information systems (GIS) and remote sensing (e.g. van 

Rensburg et al.• 2002; Storch et aI., 2003; Marzluff et al.• 2004). 

Here, we focus on spatial autocorrelation of avian composition 
and three aspects of birds' habitats: floristics (taxonomic com­

position of the vegetation), physiognomy (physical structure of the 

vegetation), and an estimate of primary productivity. Floristics 
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and physiognomy were characterized on the basis of field meas­

urements. Productivity was estimated from a satellite image on 

the basis of the normalized difference vegetation index (NDVI), 

a measure of , greenness' (Tucker, 1979). The primary objective 

of our work was to examine whether the pattern of spatial 

autocorrelation for birds was concordant with, and hence might 

in part be explained by, patterns of spatial autocorrelation of 

floristics, vegetation structure, and estimated productivity. We 

do not regard spatial autocorrelation as a factor that is detrimental 

to understanding, but as an underutilized source of information 

that can elucidate influences on assemblage composition across 

space. 

There has been an enduring ecological debate about the 

relative roles of floristics and physiognomy in structuring assem­

blages of birds (MacArthur & MacArthur, 1961; Robinson & 

Holmes, 1984; Rotenberry, 1985; Mac Nally, 1990). Data on the 

respective influence of these factors on species composition of 

birds may be helpful for development and implementation of 

conservation and land-use plans. Evidence on whether species 

composition of birds is more closely associated with floristics 

or vegetation structure is equivocal (MacArthur et ai. , 1966; 

Anderson & Shugart, 1974; Tomoff, 1974; Wiens & Rotenberry, 

1981). Some authors have suggested that as spatial lag increases, 

the importance of floristics decreases and the role of vegetation 

structure increases (Rotenberry, 1985; Wiens et al., 1987). There 

also may be correlations between floristic similarities and 

structural similarities across relatively large areas (Mac Nally 

et al., 2002). Various estimates of primary productivity have been 

shown to explain spatial patterns in species richness and species 

composition of birds in many systems, especially at subcontinental 

to global scales (van Rensburg et aI., 2002; Hawkins et al. , 2003; 
Hurlbert & Haskell, 2003). 

Geostatistical analyses usually model spatial autocorrelation 

with semivariograms, which are representations of variances in a 

variable (e.g. mineral concentration) as a function of distance 

(also called spatial lag) (Cressie, 1993; Carr, 1995). Geospatial 

analyses have at least two major advantages over techniques such 

as multiple regression. First, one need not assume that variation 

in the response variable is linearly related to variation in the 

predictor variables, which is a basic assumption of multiple 

regression. Although nonlinear versions of multiple regression 

are possible (e.g. quadratic terms of predictors), the exact choice 

of functional form is potentially complicated by interactions 

among predictor variables (including nonlinear terms) and 

different spatial patterns. The latter point underlies our decision 

to use geospatial methods. Second, it is unclear how to gauge the 

importance of correlations among similarities in conventional 

regression analysis; for example, how many degrees of freedom 

are reasonable? Geospatial analysis, however, offers a variety of 

semivariogram models to characterize different types of spatial 

phenomena and is designed to work on data arising from pairs of 

points. In many cases, prior knowledge about the model most 

likely to fit a given phenomenon does not exist, or there may 

be valid alternative hypotheses . We fitted a set of the most 

commonly used semivariogram models to measures of the 

similarity of bird assemblages, floristics, vegetation structure, 
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and estimated productivity at 140 sites in the mountains of the 

central Great Basin (Lander and Nye counties, Nevada, USA). 

METHODS 

Field methods 

Data for our analyses were collected from 2001 to 2004 in three 

adjacent mountain ranges in the central Great Basin , the 

Shoshone Mountains (1850 km~, approximate north-south 

boundaries 39°14' to 38°57'), Toiyabe Range (3100 km', 39°54' 

to 38°30'), and Toquima Range (I750 km', 39°17' to 38°29'). 

The mountain ranges are in the same biogeographical subregion 

and contain similar assemblages of plants and animals. Relatively 

dry canyons in all of the ranges are dominated by pinyon (PinllS 
monophy/la Torr. & Frem), juniper (Juniperus osteosperma (Torr.) 

Little, Juniperus occidentalis Hook.) , sagebrush (Artemisia 
tridentata ssp. (Rydb.) B. Boivin), and rabbitbrush (Chrysothamnus 

nauseosus spp. (Pall .) Britt.). Riparian vegetation in canyons with 

permanent or ephemeral streams can include aspen (Populus 
tremuloides Michx.), cottonwood (Populus spp.), willow (Salix 
spp.), water birch (Betula occidentalis Hook.), rose (Rosa woodsii 
(S. Wats. ) Jepson), and a diverse understorey of grasses and 

forbs. 

Data for birds were collected using established techniques that 

detect species presence reliably. These methods have been 

described in detail and tested for sampling adequacy in previous 

work (e.g. Betrus, 2002). We sampled birds during the breeding 

season (late May through June) using 75-m variable-radius 

point counts, an effective method for sampling birds in ripar­

ian areas and uplands in the Great Basin (Dobkin & Rich, 1998). 

Before selecting sampling points, we divided each of our study 

canyons into multiple segments from base to crest. Each segment 

was long enough to span a 100-m change in elevation. Within a 

segment, points were located in each of the dominant vegetation 

types (usually two or three points per segment). Most points were 

established> 200 m apart (i.e. 350 m betv.'een point centres); 

territory sizes of birds during the breeding season typically are 

smaller than distances between neighbouring sampling points. 

Point counts were conducted only in calm weather, and none 

were conducted > 3.5 h after dawn. Each point was visited three 

times per year (Siegel et al., 2001; Betrus, 2002). Geographical 

coordinates at the centre of the point were measured with a 

global positioning system. 

To characterize floristics and vegetation structure (Table 1), 

we established three vegetation sampling plots at each bird point. 

We measured three radial30-m lines, separated by 120°, from the 

centre of the point count location. The end of each line served as 

the centre of a circular vegetation sampling plot with 11.3 m 

radius (0.04 hal. Each plot was divided into four quadrants. 

Within each quadrant, we recorded the size of all live trees (either 

diameter at breast height (d.b.h. ) or basal diameter, depending 

on plant morphology) and the identity of all live trees. Trees 

generally were defined as woody vegetation> 1 m in height and 

~ 5 cm d.b.h. We also recorded tpe size and, where possible, the 

identity of standing or fallen deaa trees. 
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Table 1 Variables used to define floristics and vegetation structure acquired in June 2002, coincident with the peak growing season 

at each sampling point and the most active period for breeding birds in the Great Basin. 

Estimated frequency or 
proportion cover 

Variable Minimum Maximum 

Floristics 
Populus tremll/oides 0 0.630 

Pinus monophylla 0 0.651 

Juniperus spp. 0 0.897 

Cercocarpus ledifolius 0 0.685 

Betula occidentalis 0 0.112 

Prunus ,'irginiana 

Salix spp. 
0 

0 

0.112 
/ 
0.674 

Eph edra sp. 0 0.155 

Rosa woodsii 0 0.333 

Ribes spp. 0 0.713 

Artemesin tridentata ssp. 0 0.952 

Chrysothamnus spp. 0 0.630 

Grasses 0 1.000 

Forbs 0 0.810 

Vegetation structure 
Canopy cover 0 0.857 

Shrub cover 0 0.952 

Ground cover 0 1.000 

Bare ground 0 0.952 

Number of live trees 0 145 

Average diameter of live trees (em) 6.56 200 

Number of dead trees 0 64 
Average di,1I1Jeter of dead trees (em) 8 75.4 

We used a concave spherical densiometer to estimate proportion 

of canopy cover. To estimate cover of shrubs, ground vegetation, 

litte r, and bare ground, we used an ocular tube (Noon, 1981). 

Ocular tube measurements were taken at a 45° angle downward 

from the line of sight. When vegetation was present, we recorded 

the occurrence of dominant species (approximately 25 different 

taxa; most grasses and forbs were not treated separately). We 

collected 21 densiometer and ocular tube readings at each bird 

point: one each at 8 m, 16 m, and 24 m along the 30-m line from 

the centre of the bird point to the perimeter of each circular 

vegetation plot; and one while facing in each of the four cardinal 

directions from the centre of each circular plot. Cover values for 

each structural layer (canopy, shrubs, ground vegetation, and 

bare ground) were averaged at each bird point. Occurrence data 

for individual species or taxonomic groups of plants were 

aggregated into a relative measure of frequency at each bird 

point. Taxa detected in very few points were not included in our 

analyses. 

To estimate primary productivity in a 30 x 30 m pixel at the 

centre of each point, we calculated the normalized difference 

vegetation index (Rouse et al., 1973), a measure of 'greenness' 

that is an extensively used vegetation ratio in remote sensing 

(Tucker, 1979). We derived NDVI measures from a single 

cloud-free, geocorrected Landsat 7 EMT + image (WRS 41/33) 

Dissimilarity measures 

We used data on geographical coordinates, abundances of 79 

species of birds, floristics, vegetation structure, and NDVI at 140 

sampling points to build a matrix of dissimilarities for each 

response variable. This process generated geographical separa­

tions (linear distances) and dissimilarity values for each response 

variable at 9730 pairs of points. We used the Canberra distance as 

our measure of dissimilarity for bird assemblages, floristics, and 

vegetation structure because its structure internally scales within 

variables. Accordingly, calculations on matrices that include 

variables wi th substantially different ranges are not strongly 

influenced by variables with large numerical ranges (Lance & 
Williams, 1967). Although abundances of most species of birds 

did not differ widely in numerical range, measures of floristics 

and vegetation structure often spanned broader ranges (see 

Table 1). NDVI is measured on a scale from -1.0 to 1.0, where 

increasing positive values indicate increasing concentrations of 

green vegetation and negative values indicate non-vegetated 

surface features such as water, bare ground, or rock. Values at our 

sampled points ranged from -0.313 to 0.170. Our measure of 

dissimilarity for NDVI was mean difference. 

Semivariogram models 

For each of the four response variables, we calculated eight of 

the most commonly used (isotropic) semivariogram models: 

(1) linear, (2) spherical, (3) exponential, (4) Gaussian, (5) wave 

(o r sine-hole), (6) cubic, (7) Matern (v =312), and (8) power­

law. Formulae for these models are given by Banerjee et al. (2004; 

Table 3.2). Diagrams of many of these models are provided in 

Cressie (J 993; Fig. 2.13). 

Different semivariogram models characterize ecological asso­

ciations that have different types of spatial relationships. For 

example, many spatially autocorrelated phenomena follow a 

spherical model- spatial autocorrelation decreases linearly to a 

certain lag and reaches an asymptote (Carr, 1995), beyond which 

the locations are statistically uncorrelated and can be regarded 

as 'independent'. Exponential models are similar to spherical 

models, but the spatial autocorrelation approaches its maximum 

value asymptotically (Carr, 1995). 

Three paran1eters describe most semivariogram models (Dale, 

1999). The first paran1eter, the range, is the geographical separa­

tion at which semivariogran1 values become constant (i .e. the 

distance at which the response variable no longer is spatially 

autocorrelated). The second parameter, the nugget, is the esti­

mated dissimilarity as the geographical separation approaches 

zero. The third parameter, the sill, is the dissimilarity value at the 

range. Linear and power-law models have nugget paran1eters but 

neither has a range or a sill; both have a slope parameter. The 

power-law model also has an exponent parameter. 

We used Bayesian model-fitting to compute sernivariograms 

(Congdon, 2003: Chapter 7). We first grouped values for each 
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response variable into bins with lag distances of 1 km. For each 

bin, we computed the mean dissimilarity (Yd) and the variance of 

the dissimilarity (Vd = lIprecision, Congdon, 2003). We grouped 

all site-pairs with geographical separations> 62 km into one bin, 

because sample sizes (Nd ) were relatively low for kilometre-wide 

bins at those lags. Among all bins, 77::; Nd ::; 260, which far 

exceeded the minimum of 30 recommended by 10urnel and 

Huijbregts (1978). 

For the range, we used a uniform prior with a minimum of 

0.05 km and a maximum of 150 km. For all semivariogram mod­

els except the linear and power-law models, we used a uniform 

prior for the ratio of the nugget to the sum of the nugget and sill 

(minimum =0.05, maximum =0.95; Congdon, 2003). For the 

linear and power-law models, we gave the nugget a gammi\ prior 

with parameters of 1.0 and 0.001 and the slope a normal prior 

(mean = 0, precision = lO-6). For the exponent in the power-law 

model, the prior was a uniform distribution with minimum of 0 

and a maximum of 10. 

We used the WINBUGS software package (version 1.4, Spiegel­

halter et al., 2003) for all modelling. WINBUGS uses Markov chain 

Monte Carlo methods to iteratively estimate model parameters 

by repeatedly 'sampling' from posterior probability distributions 

specified in the model (Gilks et aI., 1996). 

Semivariogram discrimination 

We used criterion-based methods (Akaike, 1973; Schwarz, 1978) 

to identify the best semivariogram model for each of the four 

response variables. Model complexity for the different semivario­

gram formulae is similar. The linear model requires estimates 

for two parameters (nugget and slope), whereas the other seven 

models require estimates for three parameters (nugget, slope, 

and exponent for the power-law model; range, nugget, and sill 

for the remaining models). We computed the Bayesian informa­

tion criterion (BIC; Schwarz, 1978). Note that criterion-based 

approaches seek the smallest value (i.e. most negative BlC) for 

the criterion because the goal is to minimize a function of a 

weighted sum of model fit and model complexity. Models with 

BIC values that cliffer by less than three are held to have similar 

statistical support (Burnham & Anderson, 1998). 

RESULTS 

We calculated the fit (BIC) of the eight models for birds, floris­

tics, vegetation structure, and NOVI (Table 2). We also calculated 

6-BIC values, which refer to differences in BIC values between 

the best (lowest BIC) model and the other seven models. 

The best fit for avifaunal composition was a spherical model. 

Fits for cubic and exponential semivariogram models were 

within three BIC units of the fit of the spherical model (Table 2). 

Based on the parameters for the spherical model, avifaunal com­

position was spatially autocorrelated at lag distances from 0 to 

29.6 km (Table 3a); mean Canberra dissimilarities increased rap­

idly from a mean of 0.38 for lag distances of 0-1 km to 0.53 at the 

range (Fig. la). The plot of observed dissimilarities also revealed 

decreases in mean dissimilarity (increases in spatial autocorrela­
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Spatial autocorrelation of birds and their habitats 

Table 2 Bayesian information criterion (BI C) and 6 -SIC values for 
semivariogram models for species composition of birds, floristics, 
vegetation structure, and NOVI. 6-BIC values refer to differences in 
SIC values between the 'best' (lowest mc) model and the other 
seven models 

Model Variable BIC 6-BIC 

Linear Birds -86.5 18.2 
"Spherical Birds -104.7 0.0 
Exponential Birds -102.1 2.6 
Gaussian Birds -99.3 5.4 
Sine-hole Birds -10 1.7 3.0 
Cubic Birds -103.5 1.2 
Matern (3/2) Birds -95.9 8.8 
Power-law Birds -97.7 7.0 
Linear Floristics -114.5 19.7 
"Spherical Floristics -134.2 0.0 
Exponential Floristics -133.7 0.5 
Gaussian Floristics -127.3 6.9 
Cubic Floristics -132.0 2.2 
Matern (3/2) Floristics -125.8 8.4 
Power law Floristics -128.1 6.1 
Sine-hole Floristics -119.7 14.5 
Linear Structure -115.7 10.0 
Spherical Structure -121.7 4.0 
Exponential Structure -121.8 3.9 
Gaussian Structure -117.8 7.9 
Sine-hole Structure -114.4 11.3 
Cubic Stl1.lcture -1 22.2 3.5 
Matern (3/2) Structure -118.8 6.9 
"Power law Structure -125.7 0.0 
Linear NOVI -224.4 32.4 
"Spherical NOVI -256.8 0.0 
Exponential NOVI - 209.8 47.0 
Gaussian NOVI -214.1 42.7 
Sine-hole NOVI -218.5 38.3 
Cubic NOVI -204.1 52.7 
Matern (3/2) NOVI -220.8 36.0 
Power law NDVI -222.2 34.6 

"model of best fit as assessed by minimum BIC va lue. 

tion) at lag distances near 12 km and 52 km (Fig. 1a). The 

parameters for the cubic model were similar to those for the 

spherical model (range = 32.4 km, nugget =0.39, sill =0.53). The 

exponential model, which has a different shape to the spherical 

and cubic semivariograms because the sill is reached at infinite 

spatial lag, had a range of 12.9 km, a nugget of 0.35, and a sill of 

0.54. 

Floristics data were spatially autocorrelated at lag distances 

from 0 to 20.1 km (Table 3a). A spherical semivariogram model 

was the best fit to the data (Fig. I b). ModeUed dissimilarity values 

increased from 0.40 at lag distances 0-1 km to an asymptotic 

value of 0.53 (Table 3b). The dissimilarity curve was relatively 

smooth up to the sill. Again, the exponential and cubic models 

had fits within three BIC units of the best model (Table 2) . The 

e:,"ponential model had a range of 9.5 km, nugget of 0.36, and sill 
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Table 3 Parameter values for the best-fitting semivariogram 
models for (a) species composition of birds, (b) floristics, (c) 
vegetation structure, and (d) estimated productivity (NDVI) 

95% credible interval 

Mean SD Lower Upper 

ta) Bird assemblages: spherical model 
Range (km) 29.6 13.5 4.2 55.7 
Nugget 0.37 0.07 0.23 0.48 
Sill 0.53 0.02 0.49 0.58 

(b) Floristics: spherical model 
Range (km) 20.1 15.2 0.8 54.8 
Nugget 0.40 0.13 0.10 I 0.59 
Sill 0.53 0.02 0.49 0.57 

(c) Vegetation structure: power-law model 
Exponent 0.18 0.13 0.05 0.53 
Nugget 0.30 0.13 0.04 0.48 
Slope 0.13 0.10 0.01 0.35 

(d) NDV!: spherical model 
Range (km) 58.1 1.6 54.1 60.0 
Nugget 0.08 0.002 0.08 0.09 
Sill 0.13 0.001 0.13 0.13 

SD, standard deviation. 

of 0.53. Range, nugget, and sill values for the cubic model were 

20.6 km, 0.39, and 0.53, respectively. 

The best-fitting semivariogram model for vegetation structure 

was the power-law (Table 2); because the BIC for the next best­

fitting model, the cubic, was three BIC units greater, the power­

law was deemed superior to all other modelled semivariogram 

forms. Although the semivariogram did not attain an asymptote 

(by definition), the semivariogram was relatively flat, suggesting 

that vegetation structure was fairly homogenous regardless oflag 

dist~nce (Fig. Ic). 

Estimated productivity (NOV!) was spatially autocorrelated at 

lag distances from 0 to 58.1 km, with a nugget of 0.08 and a sill of 

0.13 (Table 3d). A spherical model was the best fit to the NOVI 

data (Fig. Id). The next best was a linear model , with BIC greater 

than 30 units more than the spherical model (Table 2), so there 

is little doubt that the spherical model fit data on NOVI much 

better than any of the other seven models. 

DISCUSSION 

We determined the best statistical representations of spatial vari­

ation in avian composition and three major components of 

birds' habitats, identified whether a threshold distance existed 

beyond which each response variable effectively was not auto­

correlated, and examined whether the pattern of spatial auto­

correlation for birds was concordant with, and thus might in 

part reflect, patterns of spatial autocorrelation of habitat variables. 

We found that species composition of birds was spatially auto­
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Figure 1 Best-fit semivariograms for (a) species composition of 
birds (spherical), (b) floristics (spherical), (c) vegetation structure 
(power-law), and (d) estimated productivity (NDVI) (spherical). 
Points for (a-<) are mean Canberra dissimilarities, points for (d) are 
mean differences. Lines indicate the mean and 95% credible intervals. 

correlated over a larger lag distance than floristics, but over a much 

smaller distance than NOVI or vegetation structure, which did 

not attain an asymptote over the range of measured lag distances. 

Oissimilarity values for birds were relativel), high at all dis­

tances measured. This is consistent with previous work in our 

study system that found considerable spatial variation in species 

composition of birds, averaged across all lag distances, regardless 

of sampling resolution (Mac Nally et al., 2004). The range value 

for birds (c. 30 km) was lower than the greatest lag distance for 

points within a mountain range (c. 35 km). Thus, at least some 

key influences on spatial autocorrelation of avifaunal composi­

tion appear to be operating within mountain ranges rather than 

across larger spatial extents. There is substantial evidence that 

individual mountain ranges function as permeable but distinct 

islands of habitat for many taxa whose resources in the arid 

valleys separating the mountain ranges are scarce (McDona ld 

&Brown, 1992; Murphy &Weiss, 1992). In addition, although the 

mountain ranges we surveyed are in the same ecological prov­

ince, differences in elevation and precipitation at the mountain­

range level lead to some differences in land cover (Grayson, 
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1993). The observed increase in spatial autocorrelation at c. 

12 km may reflect similarities in avifaunal composition at points 

with similar elevation (especially points at relatively low eleva­

tion or relatively high elevation) but in different canyons. 

Species composition of both birds and plants was both described 

best by a spherical model. Dissimilarity values for avifaunal com­

position were slightly lower than values for floristics at very smail 

lag distances, but were similar at the asymptotic maximum. 

These results suggest that the spatial pattern of avifaunal com­

position i.n the montane central Great Basin, as distinct from 

species composition at anyone point in space, is more consistent 

with spatial variation in floristic composition than with spatial 

patterns of variation in vegetation structure. This does not imply 

that the structure of vegetation plays no role in where different 

species of birds occur, but spatial dissimilarities in species com­

position were not concordant with our measures of vegetation 

structure. It is possible that one or more variables associated with 

vegetation structure (e.g. canopy cover or number of live trees) 

would be more closely associated with avifaunal composition 

than our aggregate assessment of vegetation structure. 

It is possible that species composition of birds and species 

composition of plants have similar responses to abiotic environ­

mental gradients (Hawkins et al. , 2003). These relationships may 

be fairly common in desert ecosystems across south-western 

North America (Fleishman et aI., 2003), where availability of 

water is a primary driver of biodiversity patterns and ecological 

processes (Huxman et al., 2004). Although we did not measure 

spatial autocorrelation of temperature or precipitation, these 

gradients often influence spatial patterns in avifaunal richness 

and composition (Root et aI., 2003; Storch et aI., 2003), floristic 

composition, and primary productivity across a range of scales. 

Climate affects the distribution of birds both directly, in terms of 

physiological responses, and indirectly, by mediating availability 

of food and other resources (jones et al., 2003). Unfortunately, 

few weather stations are located in our study area, and, in part 

because of the lack of field data, the accuracy of most existing 

climate models in heterogeneous montane terrain is limited. In 

particular, spatial comparisons based on absolute climatic values 

generated by such models, rather than rank orderings, may be 

unreliable. 

Another possibility is that avifaunal composition is respond­

ing in part to attributes of bird habitat that we did not character­

ize. We did not measure several resources, such as availability of 

insect prey, which may have different spatial patterns to vegeta­

tion. The scales at which we measured avifaunal composition 

and habitat may have been mismatched. Furthermore, we did 

not examine potential differences in spatial autocorrelation 

among groups of bird species that differed with respect to func­

tional traits such as migratory status, diet, or dependence on 

water (Koenig, 2001; Selmi & Boulinier, 2001; Lockwood etal., 
2002). Such an analysis is to be reported in a subsequent paper. 

Lack of correspondence between spatial patterns of bird com­

position and vegetation structure also may suggest that avifaunal 

assembly in our study system is influenced by population 

dynamics or dispersal history (Storch et aI., 2003; Hawkins et al., 
2003). Many of the species we recorded are not residents; they 

© 2006 The Authors 

breed but do not winter in the study system. If availability of 

nesting sites is not strongly limited, individuals may select terri­

tories from a suite of potentially suitable locations. On the basis 

of which territories are occupied in a given year, there may be 

substantial variation in the attributes that are inferred to be 

important in birds' use of habitats. Another explanation, not 

mutually exclusive, is that some birds may select territories on 

the basis of 'greenness' rather than a certain vegetational profile. 

The differences in models for the three vegetation variables sug­

gest that estimated productivity in this system cannot be pre­

dicted as a simple function of floristics and vegetation structure. 

In a temporally variable system such as the Great Basin, 

certain vegetation variables may fail to explain distributional 

patterns if species exhibit site fidelity, natal philopatry, and 

attraction to assemblies of conspecific individuals (Wiens, 1985; 

Lichstein et al., 2002). Distributions of birds may be affected 

more by the presence or quantity of different resources in the 

landscape than by the structural arrangement of those habitat 

types (Mac Naily, 2005). Indeed, the difference between auto­

correlation ranges for birds and floristics probably reflects 

differences in dispersal ability between birds and plants. As the 

lag distance over which spatial autocorrelation is present decreases, 

it implies that spatial variation increasingly is structured in 

patches (Diniz-Filho et al., 2003). This suggests that in our study 

system, the distributions of plant species are more patchy than 

the distributions of birds. 

Spatial autocorrelation often is seen in a negative light by eco­

logists because it reduces statistical independence among sites, 

and hence, in frequentist inference, also reduces power. However, 

explicitly modelling spatial autocorrelation increases the reliabil­

ity of inferences about relationships between distributional pat­

terns and potential predictor variables. A rich statistical toolset 

for analyses of spatial autocorrelation has been developed by 

geospatial mod ellers, and the availability of Bayesian (Congdon, 

2003) and smoothing (Tobin, 2004) methods provides even 

greater flexibility than existing frequentist estimation had 

allowed. We agree with Reyers et al. (2002) and Tobin (2004) that 

ecologists should embrace spatial autocorrelation modelling for 

its potential to provide insights about the potential causes of dis­

tributional patterns of focal taxa and to help to ensure that eco­

logical processes supporting biodiversity patterns are managed 

appropriately. 
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