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Introduction 
The current fire situation with numerous very large fires that regularly cross agency 
boundaries has shown a major need for improved fuels maps. Small fires require only 
simple maps that can be hand drawn on large scale base maps during a 
reconnaissance flight but large fires and major planning projects require accurate 
maps covering thousands of acres that provide relevant fuels data at a local scale. 
Current small scale fuel maps are largely agency specific making it necessary for fire 
managers and planners to be familiar with more than one system.  These systems 
often differ in resolution of both classification units and map unit size creating 
confusion and frustration in interagency projects.  There is need for common maps 
that cover very large areas.  Remote Sensing in the form of radar and optical images 
fused into a single entity has the potential to provide such maps.  There is a critical 
need for cost-effective remote sensing methodologies that render accurate, efficient 
fuel maps for landscape to regional scales.   

This project explored the possibility of combining these two types of remotely sensed 
data.  It was divided into two parts: a. extracting fuel parameters using a combination 
of remote sensing types including radar and optical images and b. the presentation of 
the results in a form readily useful to fire managers through GIS processes 

 

Summary 
 
We developed a variety of remote sensing and GIS methods and products that map 
wildland fuels according to specific vegetation types (fuel models) and the horizontal 
and vertical position of biomass, two factors significantly affect the intensity and 
spread of fires.  We collected airborne hyperspectral and LiDAR, satellite-based 
ASTER (multispectral), airborne polarimetric and interferometric SAR, and forest 
fuel ground validation (n=833 plots in 64 stands) in four primary areas within YNP 
that are representative of vegetation types in the GYE.  Unique algorithms and 
classification procedures applied to the hyperspectral data were used to map NFFL 
fuel types as well as fuel condition, defined as the fraction of live vegetation to 
senescent vegetation.  SAR data were used to accurately estimate canopy, bole, and 
total biomass of structured vegetation types (shrubs to moderate biomass level 
forests).  It was also used to subdivide NFFL fuel types into biomass levels.  A major 
goal of this research was to assess the added value of combining multiple datasets in 
the analysis of fuel distribution.  This assessment was conducted using two separate 
levels (approaches).  The first was to include both optical and SAR data in the model 
building phase of the research and the second was to combine optimal results from 
each dataset to produce an enhanced final dataset.  Data fusion was not found to be 
helpful for estimation of crown biomass or the fuel components that can be derived 
from crown biomass values.  Overall, for level 1, where raw data were used, SAR 
data outperformed optical data.  For level 2, optical data products performed slightly 
better than SAR data products.  Surprisingly, when fusion levels 1 and 2 were 
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compared, raw SAR data outperformed the SAR data products.  Optimal fusion 
results were achieved when optical data products were combined with raw SAR data 
in a Level 1/2 hybrid.  We also provided recommendations based on lessons learned 
during this research to guide fire analysts, researchers and fire managers with a 
roadmap for further investigations and applications (sensor costs, accuracies and 
other characteristics).  Finally, in our opinion a multi-tiered approach is needed to 
adequately map and monitor fuels across YNP and the GYA.  This multi-tiered 
approach must account for spatial variability that is a result of environmental 
conditions, land use and disturbance history.  It must also account for the temporal 
variability in fuels that occurs throughout the fire season as well as on larger time 
scales.   

We then generated a GIS model that provides a framework describing relationships 
between image-derived fuel properties of different elements of forests, including tree, 
shrub, herbaceous, and downed wood layers, as well as tree crown and boles. The 
data model also allows these elements to be aggregated or otherwise combined to 
represent forest stands.  Stands can be defined by forest planting and harvesting plans, 
by analysis of the spatial variability of the forest characteristics as measured by 
remote sensing, or from other definitions.  Once defined, the attributes for stands 
potentially include a very wide variety of values including total, maximum, mean, 
variance for biomass in each of the tree, shrub, herbaceous, and downed wood 
components that comprise the stand.  A GIS can compute these values for each stand 
from the pixel level description of forests once stands are defined. 

 

 
 
 
 
 
Remote Sensing Analysis and Classification 
Deliverables 
 

Optical Image Acquisition and Processing 
 
1) Archival ASTER data were assessed, downloaded, radiometrically and 

atmospherically processed and georeferenced. 
2) An ASTER data processing guide was developed that includes custom IDL software 

for processing ASTER data 
3) HyMap data collection campaign was developed, planned, and initiated with field 

data collection conducted concurrent to data collection 
4) HyMap data were atmospherically and geometrically corrected 
5) SRTM elevation data were acquired for entire GYE and were processed to calculate 

slope, aspect and elevation and convert data into project coordinate system (UTM, 
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zone 12, NAD83).  An SRTM data processing guide was developed that includes 
custom IDL software for processing SRTM data. 

 

SAR image Acquisition and Processing 
 
1) Archival SIR-C data were requested, acquired and processed to backscatter (dB) 
2) AIRSAR data collection campaign was developed, planned, and initiated with field 

data collection conducted concurrent to data collection 
3) AIRSAR data were terrain corrected and processed to backscatter (dB) 
4) SAR data sets (including processed and terrain corrected AIRSAR, SIR-C) delivered? 

to the study team, including geo-referenced high-resolution AIRSAR data. 
 

Field Data Acquisition and Processing 
 
1) Field data collection efforts were planned for supporting classification efforts and 

biomass retrieval efforts across a broad swath of YNP and a range of vegetation types 
and disturbance histories.  These methods were tested and implemented during 2 
seasons of field data collection including field crews of 6 people for 3 months each. 

2) Existing allometric equations and biomass equations were investigated for suitability 
for YNP fuels and biomass calculations.  A database was developed using MS Access 
and VBA to calculate field data to biomass. 

3) Field data were processed using database and provided along with differentially 
corrected GPS data of all field sites to all investigators 

4) Field data were collected to support AIRSAR data collection.  Measurements 
included soil moisture data collected across a range of soil moisture levels, and 
additional forest height measurements.  All field data in support of SAR work was 
provided to study team. 

5) Field data were assessed for validation and training for retrieval of vegetation 
biomass parameters at the all study sites. 

 

Optical Analysis Methodology 
 
1) Methodologies were evaluated for suitability for vegetation/fuels type classification.  

Decision trees were determined to be an optimal approach due to non-parametric 
nature, interpretability and high classification accuracies. 

2) IDL routines that facilitate Classification Tree classification were developed using the 
Splus and R software package and the ENVI/IDL analysis environment.  Routines 
allow for the creation of single and multiple decision trees and the classification of 
images from trees.  Options include cross-validation, ensemble approaches, fuzzy 
classifications and generation of uncertainty maps. 

3) IDL routines were developed to implement Spectral Mixture Analysis (SMA) and 
Multiple Endmember Spectral Mixture Analysis (MESMA) using images and spectral 
libraries in the ENVI environment.  This work has lead to the development of a fully 
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functional end-user software suite that is an ENVI add-on called VIPER Tools which 
is freely available at http://www.geog.ucsb.edu/~halligan/viper/viper_tools.html.  

4) IDL software was developed for classification of digital color photography to retrieve 
% cover of green vegetation for estimating herbaceous fuel load with minimal 
destructive harvesting 

5) ENVI interface for a wide range of new IDL-based image processing software was 
developed that includes routines for: 

a. Implementation calculating both multispectral and hyperspectral vegetation 
indices (NDVI, SAVI, NDWI, PRI, EWT, etc.) 

b. An extensive toolbox for dealing with field data including shapefiles and 
Regions of Intrest (ROIs) and for extracting image data for field sites 

Optical Mapping Products 
 
1) Classification tree map products were produced for ASTER and HyMap datasets and 

presented in the 2003 annual report as well as at the presentation at the April 2004 
JFSP PI workshop in Phoenix and the YNP YCR presentation in May 2004.  These 
products were also supplied to all collaborators for evaluation and feedback.  
Revisions were made in Feb 2005 and May 2005 to improve results. 

2) SMA data products were produced for ASTER and HyMap datasets and presented in 
the 2003 annual report as well as at the presentation at the April 2004 JFSP PI 
workshop in Phoenix and the YNP YCR presentation in May 2004.  These products 
were also shown to all collaborators for evaluation and feedback.  Revisions were 
made in Feb 2005, May 2005, and May 2006 to improve results.   

3) Maximum likelihood classifications of Landsat and HyMap data using a new training 
dataset developed using aerial photo interpretation, LiDAR data, and existing fuel 
maps and used to classify the HyMap and Landsat data with a Maximum Likelihood 
(ML) approach.  The ML maps provided appear to represent a higher quality fuel 
model data product based on a qualitative comparison to the imagery and existing 
fuel maps. 

 

SAR Mapping Products 
 
1) Biomass of forests (foliage, branch, bole) and non-forests (grasslands and shrublands) 

from SIR-C data 
2) Biomass classes Binned biomass classes from SIR-C data 
3) Biomass of forests (foliage, branch, bole) and non-forests (grasslands and shrublands)  

from high-resolution AIRSAR data 
4) Biomass classes, binned biomass classes from high-resolution AIRSAR data 
         

Fusion Mapping Products 
 
1) Fusion images of hyperspectral data with SAR data were created to show as a single 

visualization both the total biomass and fuel type classification.  These data were 
provided to collaborators in May 2005 and were presented to the GYA FMO’s at their 
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biannual meeting in Bozeman, MT.  Final versions of these maps were created in 
May of 2006 and represent fusion results for both HyMap and Landsat ETM+ NFFL 
fuel model classifications with AIRSAR crown biomass.  These maps are provided as 
final Fusion Level 3 deliverables. 

 
2) Fusion Level 1 and 2 analysis of HyMap and AIRSAR data was conducted to assess 

tradeoffs between fusion approaches as well as data inputs.  Figures and tables 
showing methods and accuracies are provided as final deliverables along with maps 
which were developed from optimal fusion. 

 

Publications and Conference Proceedings 
 
1) Saatchi, S., Despain, D., Halligan, K. and Crabtree R. (2006)  Estimation of Forest 

Fuel Load from Radar Remote Sensing.  IEEE Trans. on Geoscience and Remote 
Sensing.  Accepted. 

 
2) Dennison, P.E., K.Q. Halligan and D.A. Roberts, 2004.  A comparison of error 

metrics and constraints for multiple endmember spectral mixture analysis and spectral 
angle mapper.  Remote Sensing of Environment, 93, 359-367 

 
3) Peterson, S., Goldstein, N., Clark, M., Halligan, K., Schneider, P., Dennison, P. and 

Roberts, D. (2005). Sensitivity Analysis of the 2003 Simi Wildfire Event. 
Proceedings of the 8th International Conference on GeoComputation, August 1-3, 
2005, University of Michigan, Eastern Michigan University, USA. 

 
4) In preparation: 
 

a) Classification of wildland fuels in Yellowstone with Decision Tree Analysis 
b) Mapping wildland fuel condition in Yellowstone using Spectral Mixture Analysis 
c) Use of inteferometry data for forest height estimation using SRTM and AIRSAR 

data. 

Education and Outreach: 
 
1) Presentation at GYA FMO meeting in West Yellowstone, June 2003 and in Bozeman, 

May 2005 to present research project 
2) Presentation at JFSP PI workshop in Phoenix, AZ April 2004 
3) Presentation at YNP YCR May 2004 
4) Training workshop at YERC May 2004 and Feb 2005 to present optical image 

analysis and IDL programming 
5) Development and updating of YERC JFSP website to communicate project objects 

and methods.  See www.geog.ucsb.edu/~halligan/yfp/index.htm 
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Major Research Findings 
 
Given the large quantity of datasets, data types and analysis approaches used in this 
research we attempt here to provide a useful summary of our findings as a companion to 
the final data products.  Under each category below we discuss the data and analysis 
methods used, challenges faced and successes achieved.  Where appropriate, deliverables 
that resulted from the method being described are called out.  Following this section, a 
recommendations section builds off the lessons learned during this research to provide 
researchers and fire managers with a roadmap for further investigations. 

Remote Sensing Data Types 
Two major data types were assessed in this work: passive optical data (hyperspectral and 
multispectral data) and active microwave (Synthetic Aperture RADAR - SAR) data.  
Generally, passive sensors are successful in classification of “2-D surface” cover and 
vegetation types.  Relying upon illumination of features with photons from sunlight 
(hence passive), optical sensors don’t penetrate surface features such as vegetation and 
thus cannot provide estimates of 3-D structure.  However, active sensors like SAR and 
LiDAR can.  Consistent with the wealth of scientific literature, SAR data were used to 
conduct the bulk of the fuel load retrieval while optical data were utilized mainly for 2-D 
classification purposes. 
 
As a windfall to this project YERC was able to leverage other ongoing research projects 
to obtain high resolution LIDAR data during the 2003 field campaign over study sites in 
the Northeast corner of the Park. Analysis of these data are included here to a limited 
extent in the hopes of providing some comparisons to the optical and SAR datasets in 
order to aid the reader in assessing the utility of this increasingly used data type. 

SAR (Synthetic Aperture Radar) 
SAR data are sensitive to vegetation architecture, soil moisture and above ground 
biomass and have been shown in the literature to be a suitable dataset for estimating 
biomass in temperate ecosystems.  Data from SIR-C (1994) and AIRSAR (2003) were 
used in this research to accurately retrieve above ground biomass, (crown, bole, and total) 
in this study.   
 
It should be noted that SAR data are a fairly complicated remote sensing dataset with 
relatively high cost to analysis and produce final mapping products.  The modeling 
routines developed during this research needed to account for complex physical 
properties within canopies and the effects of local incidence angles (LIAs).  This can be 
difficult to achieve and an advanced level of training is needed.  Another disadvantage is 
the high cost of airborne SAR sensors.  For example, NASA’s cost to cover an area the 
size of YNP is estimated at ~50K.  The few commercially available airborne SARs would 
cost more.   
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One of the major promising results of our work was the ability of SAR sensors to 
accurately extract canopy, bole, and total biomass of structured vegetation types (shrubs 
to moderate biomass level forests).  This combined with the recent and future planned 
launches of satellite-based SARs will allow fire managers a viable method of estimating 
3-D structure and fire fuel parameters important to predicting the behavior of crown-
dominated fire systems.  In addition, satellite SAR data are relatively low cost and 
provide wide area coverage that are more stable than airborne platforms.  This will 
reduce the cost of processing and analysis of SAR (one of its disadvantages), for 
example, by reducing the costs associated with removing the effects of LIA.   
 
Another major advantage of SAR is its ability to work in daytime, nighttime, clouds and 
no-clouds.  The price of satellite platforms are relatively moderate to high but new 
European and Asian systems will be lower in cost (e.g., ~ $10K to cover YNP).  These 
new satellite systems are promising in that they are polarimetric (HH, VV, and HV) and 
have increased spatial resolution (1 to 10 meters).  Fully polarimetric C- and L-band 
systems are currently in operation.  A high resolution L-band system (3-meter) is planned 
for launch in 2008 as well as the planning and construction of a satellite P-band system. 
 
Satellite interferometric SAR systems like NASA’s short-term SRTM (shuttle radar 
topography mission) is also being planned for launch (Tandem-X).  Two antenna 
interferometric SAR provides an important alternative for estimation of vegetation height 
and vegetation profiles to that of LiDAR. 

Multispectral 
Multispectral data are the most commonly used type of remote sensing data and have 
been shown to be a reliable data source for broad classification of surface types.  In this 
research multispectral data from ASTER (2001-2003) and Landsat ETM+ (1999) were 
used to map NFFL fuels models in the study area.  Advantages of satellite platform 
multispectral data like ASTER and ETM+ is their affordability (< $1K to cover YNP) 
and ease of analysis.  Their disadvantages include their unreliability due to cloud cover, 
inability to measure 3-D vegetation structure (biomass and height), and their relatively 
low classification accuracies even for generalized cover types (60% to 80% accuracies 
are common). 
 
The original proposal called for the use of ASTER data as the primary multispectral data 
set.  These data were collected and extensively processed and analyzed for mapping 
NFFL fuel models.  Code was developed for processing these data to reflectance which 
incorporates radiometric calibration, atmospheric correction, geometric correction and 
correction of systematic errors including the ‘cross-talk’ phenomenon.  Despite the effort 
invested in this dataset, several problems were encountered which limited the utility of 
this dataset.  ASTER is a tasked pointable sensor and it was not tasked under this 
research.  Instead, we relied on archive data collected by other investigators.  This 
resulted in sub-optimal locations and timing of the data acquisitions which prevented the 
creation of a consistent mosaic with suitable solar geometry and vegetation phenology.  
For example, the viewing geometry in some scenes created large Bidirectional 
Reflectance Distribution Function (BRDF) effects which caused considerable differences 
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in NFFL fuel model classifications from one scene to another.  Sub-optimal solar 
geometry also enhanced the negative effects cause by topography compounding 
classification errors. 
 
To address these shortcomings the best currently available Landsat ETM+ scene 
(9/15/1999) was used to provide a single consistent dataset over the study sites.  This 
dataset was classified for NFFL fuel models and was used in Fusion Level 3 to produce 
integrated fuel type and load visualizations.  Because topographic effects persisted in the 
Landsat data and appeared to contribute confusion between NFFL fuel models 8 and 10 
based on local solar incidence angle differences attention was placed on this common 
problem.  A new software module that applies an empirical model of reflectance based on 
the cosine of the local incidence angle was created and integrated into the beta version of 
the VIPER Tools ENVI Add-in being developed by Co-PI Kerry Halligan in cooperation 
with UCSB.  This software solution is primarily focused on Spectral Mixture Analysis 
(SMA) which was used extensively in this research to address fuel condition mapping.  
The software is freely available and can be downloaded at 
http://www.geog.ucsb.edu/~halligan/viper/viper_tools.html.  While this terrain correction 
algorithm is now complete and available to users, the timing of its creation did not allow 
for a re-processing of optical datasets to remove the influence of topography.  We feel 
that this step would improve the results of this study we intend to incorporate this 
approach into future research. 

Hyperspectral 
Airborne hyperspectral data are much more complicated to process and analyze than 
multispectral data due to their large data volume and more complex viewing geometry.  
While studies have shown increased performance of hyperspectral data over multispectral 
data with regards to classification accuracy, the real strength of hyperspectral data is their 
ability to capture physical properties by measuring the location and strength of particular 
absorption features.  Most notably, hyperspectral data have been used to map mineral 
types, amount liquid water, vegetation stress and sub-pixel abundance of surface types.  
Compared to multispectral, hyperspectral data provides a much wider and diverse set of 
biophysical parameters that can be estimated.  In addition, it achieves significantly higher 
classification accuracies that multispectral.  However, another disadvantages is it’s high 
cost.  Currently, the only hyperspectral sensor (with relatively low cost) on a satellite 
platform is Hyperion on the EO-1 satellite.  Due to it’s experimental nature and low 
reliability (cloud cover) and low coverage (7 km swath), it’s practical application for 
mapping fire fuels is low.  
 
In this research airborne HyMap data (2003) was successfully used to map NFFL fuel 
types as well as fuel condition, defined as the fraction of live vegetation to senescent 
vegetation.  Hyperspectral has a bright future for mapping fuels as well as it’s ability to 
discriminate significantly more cover and vegetation types – even species ID -- than 
compared to multispectral. 
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LiDAR (LIght Detection And Ranging)  
While not included in this proposal we also conducted some preliminary tests on the 
ability of small-footprint LiDAR for fuel estimation.  LiDAR data are well suited for 
mapping vegetation structure and have been widely used in the literature for forestry and 
fuel mapping applications.  Major limitations to these data are that their high-resolution 
(~1m or finer) result in very large data volumes and very high data costs ($20 to $30K 
per USGS 7.5 minute quad).  Additionally, there is very limited software on the market 
for analyzing these data and all efforts in this work were conducted with custom software 
applications.  Currently, there is a large footprint, non-scanning LiDAR on a satellite 
platform but it provides little capability of extracting vegetation structure and has very 
limited areal coverage. 
 
While LiDAR data represent the highest possible accuracy they are largely impractical 
for mapping of large scale patterns in fuel distribution due to costs of data collection and 
data analysis.  They do provide an excellent data source for subsets of a study area 
however and are being increasingly used as a validation data source.  Our work with 
LiDAR over the Northeast corner of the Park indicates that the horizontal and vertical 
accuracy of small footprint LiDAR make them a suitable validation data sets (for SAR, 
for example) if a limited field dataset is available for calibration of height offsets. 

Data Temporal Frequency 
Selection of an optimal remote sensing data set often represents a tradeoff between 
temporal scale and spatial resolution.  The datasets evaluated here were mostly single 
collection datasets – that is, systems that must be tasked to collect data rather than repeat 
pass systems such as orbital non-tasking satellite systems.  This was true for the SIR-C, 
AIRSAR, HyMap, ASTER and LIDAR datasets.  The only exception to this was the 
Landsat ETM+ data which includes a sun-synchronous 16-day repeat cycle.  This 
combined with the large (185km x 185km) image extent would make ETM+ a good 
candidate for baseline mapping of fuels.  Unfortunately, the Scan Line Corrector, which 
compensates for the forward motion of the satellite during data acquisition, failed on May 
31, 2003 causing large physical gaps near the edge of each picture.  One high frequency 
sensor which was not evaluated in this research but which may prove useful to the fire 
community is MODIS.  With daily data collections the MODIS sensor provides timely 
information on vegetation health and can be used to estimate fuel moisture as well as fuel 
condition.  The largest limitation is the spatial resolution of these data which range from 
250 m to 1 km depending on the band and data product desired.  Integrating the timely 
MODIS data products with higher resolution baseline maps from higher resolution 
systems might provide the best approach to mapping and monitoring wildland fuels in the 
GYA. 

Data Spatial Scale 
The spatial scale and pattern produced by remote sensing data products more closely 
matches observed fuels distributions than typical aerial photo interpretation efforts due to 
the 1 to 1 match between pixel values and biomass value or fuel model type.  This is both 
a benefit and a liability to the end user.  It is a benefit in that the data are not spatially 
averaged which may reduce or remove local areas of high or low fuel loads.  It is a 
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liability in that it presents a large amount of information which needs to be interpreted, 
especially where fuels are heterogeneous across the landscape.  Smoothing of data 
products can help produce generalized results to aid interpretation of results.   
 
Fire modeling efforts often use spatial scales ranging from 30m to 1km, depending on the 
source of their input data sets.  In this research spatial scales ranged from 10m to 30m 
depending on datasets.  AIRSAR and HyMap data were analyzed on a common 10m 
spatial scale, while Landsat and SIR-C data were processed at ~30m (28.5m-30m). 
 
There is very limited research on the effect of spatial scale on fire management decision 
support systems.  As a part of this research one modeling effort focused on spatial scale 
and heterogeneity was conducted on fuels in Southern California (Peterson et al. 2005).  
In that research different fuel data layers were used to model a single wildland fire and 
results were compared to mapped fire fronts derived from MODIS active fire data 
products.  In general it was found that heterogeneity of fuels greatly affected the spread 
rates in the FARSITE model.  This might suggest that remote sensing derived data layers, 
which are in general much more heterogeneous that other fuel maps may produce 
unexpected results in the FARSITE model which has largely been calibrated to historical 
fuel maps.  Further research is needed to assess the effects of using remote sensing 
derived fuel maps as inputs to existing fire decision support systems.  

Data Spatial Extent 
One challenge with large scale ecological processes such as wildland fire is that datasets 
used to map, monitor and model this phenomena must be both large in spatial extent and 
consistent across the study area.  Remote sensing data hold the promise of providing 
consistent datasets over large scales and are thus a promising data type for fire 
management.  This research, however, has shown the challenges that result from finer 
scale datasets such as the higher resolution HyMap and ASTER datasets where limited 
swath widths require multiple flightlines which can result in expensive data collects, 
large processing costs and potentially a range of acquisition times and dates that create 
challenges with local solar geometry and incidence angle.  Where suitable, large scale 
data products such as space borne datasets such as PALSAR (L-band SAR system on 
ALOS) and MODIS provide potential solutions to the large spatial extent needed for 
mapping large areas such as the GYA. 

Optimal Data Set Decisions 
Consistent with the original project deliverables, we herein provide a decision matrix 
table or “road map” to enable end-users cost vs. utility in assessing remotely sensed 
approaches to fire fuels.  A general road map is provided below that depicts the relative 
range of accuracy vs. spatial scale.  A more specific decision matrix is provided in the 
table below and includes a wider range of characteristics.  The specific characteristics 
listed in the column headings of this qualitative table are discussed in the above sections 
for each type of RS data included. 
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Generalized Schematic of the relative tradeoff between accuracy and spatial scale for 
various types of remotely sensed data used in our analysis. 

 
 
A qualitative matrix to aid in decisions to use RS data types. 

SENSOR 
Cost to 
acquire 

Data 
reliability 

Resolution 
(m) 

Accuracy 
(% or r2) 

Analysis 
costs 

Species 
ID ? 

Cover 
type ? Biomass ? 

Stand 
height ? 

SAR 
(satellite) moderate high 1 to 30 

0.50 to 
0.90 high mod./low mod./high mod./high moderate 

SAR 
(airborne) high mod./high 1 to 10 

0.60 to 
0.95 high mod./low mod./high mod./high moderate 

Multispectral 
(satellite) low/variable low 3 to 30 50 to 90 moderate low moderate low low 
Hyperspectral 
(airborne) mod./high moderate 1 to 20 70 to 95 mod./high mod./high high moderate low 
LiDAR 
(airborne) high moderate 1 to 3  

0.80 to 
0.98 moderate low high high high 

Training and Validation Data 
With the focus of this work on estimating the vertical distribution of fuels a statistically 
rigorous sampling design was developed and implemented.  This approach utilized 
unsupervised classification, image segmentation and a regular sampling grid to generate 
as unbiased of a field data set that could be achieved given the available resources.  Data 
collection at these field sites resulted in 833 samples from 64 stands within a linear 
transect from Old Faithful (WY) to Cooke City (MT).  The field data can be found in an 
archive file which includes spreadsheets, GIS data and web pages and images for all sites. 
 
While the extensive field dataset was ideal for the goal of mapping the vertical structure 
of fuels from active remote sensing data (RADAR and LIDAR) the randomness utilized 
in its creation limited it utility as a training or validation dataset for fuel model mapping.  
This is because while the field data adequately covered the range of fuel loads in the 
study area, they did not always represent conditions typical of particular fuel classes.  

SAR 

Multispectral 

Spatial Scale and Coverage 

A
cc

ur
ac

y 

LiDAR

Hyperspectral 
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Anomalies present biased the statistics of the modeling algorithms and created poorer 
than expected fuel model classifications.  Fuel model classifications were improved when 
a highly representative but biased training dataset was developed using aerial photo 
interpretation, LIDAR data analysis, and existing fuel maps.  See the maximum 
likelihood classifications using Landsat ETM+ and HyMap data for these improved 
classifications. 
 
These findings suggest the need for two types of training and validation datasets – one for 
mapping continuous variables which covers the range of possible conditions and one for 
mapping classes which captures variability within classes but represents typical 
conditions of each surface type. 

Analysis Methodologies (Single Datasets) 

SAR 
Based on previous research by research team member Sassan Saatchi, an improved 
approach was developed which incorporated field data with SAR backscatter models to 
produce a semi-empirical modeling approach.  This method was used to retrieve biomass 
values for tree boles and vegetation canopies which were further segmented into foliage, 
1 hour and 10 hour fuels as well as estimates of crown bulk density.  Details on the 
methods and results from the SAR modeling can be found in the manuscript by Saatchi 
which has been accepted for publication. 
 
In addition to the semi-empirical approach a simple linear and non-linear regression 
modeling effort was undertaken as a comparison to previous studies and to results that 
could be obtained from optical datasets.  It was found that the advanced methodology of 
the semi-empirical approach far out-performed simple linear and non-linear regression 
efforts by leveraging the known physical relationship between vegetation components 
and particular polarizations in the SAR data.  The semi-empirical approach was able to 
remove much of the non-linear effects seen as SAR backscatter saturates with higher 
biomass levels.  

Optical 
Linear and non-linear regression modeling was conducted to model crown biomass using 
optical data bands and optical data products.  Consistent with the literature, these efforts 
showed saturation at higher biomass values at greater rates than the SAR data, resulting 
in a non-linear that prevented inference at higher biomass level.  Best results from this 
effort can be seen in the data fusion figures in the PDF files provided. 
 
For classification purposes two main approaches were utilized.  The first was the standard 
maximum likelihood estimation approach where classes are modeled as multivariate 
normal distributions parameterized with their band means, variances and covariances.  
The maximum likelihood approach assumes normal distributions as well as similar data 
scales for all input data layers.  In theory this precludes the use of highly non-Gaussian 
date sets such as SAR data where data also differ greatly from optical data due to their 
log scale.  To account for this, analysis of the SAR data and fused (Data Fusion Levels 1 
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and 2) was conducted using classification and decision tree (CART) analysis.  More 
details on CART are provided below. 

Analysis Methodologies (Data Fusion) 
A major goal of this research was to assess the added value of combining multiple 
datasets in the analysis of fuel distribution.  This assessment was conducted using two 
separate approaches.  The first was to include both optical and SAR data in the model 
building phase of the research and the second was to combine optimal results from each 
dataset to produce an enhanced final dataset.  These two approaches can be categorized 
into 3 different Fusion Levels: 

Fusion Level 1 (Spectral Level Fusion) 
Fusion Level 1 involves model building (classification and/or regression analysis) on raw 
image bands.  For SAR data this includes the dB data while for optical data this includes 
apparent surface reflectance.  Data from multiple sensors are combined into a co-
registered data stack and used to drive models.  The model creation optimizes locally to 
select the most suitable data inputs at any particular step in the model.  In this research 
the Random Forest algorithm was implemented in R for building classification and 
decision tree ensembles.  Models were evaluated on withheld data using cross validation 
to assess model accuracy. 

Fusion Level 2 (Decision Level Fusion) 
Similar to above, Fusion Level 2 combined bands from SAR and optical data into 
Random Forest CART analysis.  In Fusion Level 2, however, SAR and optical data 
products, rather than the raw data themselves, where used to drive the modeling process.  
For SAR data products, crown and bole biomass estimation data layers produced by the 
semi-empirical modeling effort were used as model inputs.  For optical data, a large 
number of vegetation indices and spectral metrics which measure the strength of spectral 
absorption features were used as inputs.  CART analysis then proceeded to select among 
these data products to build ensemble models for predicting fuel loads and fuel model 
classes. 

Fusion Level 3 (Visualization Level Fusion) 
Fusion Level 3 represents a combination of 2 or more data products into a single 
multidimensional visualization.  This was undertaken in this research in an attempt to 
provide a single representation that combines the two main data products of this research: 
crown biomass (canopy fuel) and NFFL fuel model. 
 
Classifications are generally displayed with unique colors for each class, while 
continuous variables such biomass values are generally displayed with a gradient of one 
or more colors from light to dark.  To create Level 3 fusion products for this research we 
selected a basic color scheme for each class then developed gradients within each color to 
capture a limited number of ranges of crown biomass values.  Color Brewer 
(www.colorbrewer.org) was used in this research in an attempt to maximize visual 
separation of classes and gradients.  The image below shows the map key developed 
using Color Brewer RGB values. 
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Level 3 fusion products were created u
the AIRSAR bole biomass data created
Sassan Saatchi fused with both Landsat 
(1999 scene) and HyMap data as classified
with Maximum Likelihood Estimation
(described above).  The image below 
shows an example of this fused 
visualization over an area with a range of 
fuel conditions along the Lamar River n
Opal Creek.  
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Summary of Fusion Results 
Fusion levels 1 and 2 for estimation of crown biomass produced accuracies that were 
below those of the SAR data products produced through the semi-empirical modeling 
approach.  In addition the fusion results showed the non-linear effects in the final models, 
whereas the semi-empirical approach accounted for these non-linear effects in the 
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modeling process.  Thus data fusion was not found to be helpful for estimation of crown 
biomass or the fuel components that can be derived from crown biomass values.  This is 
likely because the optical data saturate at lower biomass ranges and thus when they are 
used add confusion and saturation effects into the model results. 
 
Fusion results for levels 1 and 2 for classification of NFFL fuel models are outlined in the 
table below.  For level 1, where raw data were used, SAR data outperformed optical data.  
For level 2, optical data products performed slightly better than SAR data products.  
Surprisingly, when fusion levels 1 and 2 were compared, raw SAR data outperformed the 
SAR data products.  Optimal fusion results were achieved when optical data products 
were combined with raw SAR data in a Level 1/2 hybrid.    
 
Table 3**.  Classification results for all individual and combined datasets showing overall accuracy, 
kappa coefficient, and the minimum user’s and producer’s accuracy for CART classifications.  For 
all model runs all 44 stands were used in a leave-one-out cross-validation. Subscripts ref, feat, bs and 
bio indicate reflectance, spectral features, backscatter and derived biomass, respectively. 

Input 
Dataset(s) 

Overall 
Accuracy Kappa 

Minimum 
User’s 

Accuracy 
(class) 

Minimum 
Producer’s 
Accuracy 

(class) 

HyMapref 63.3% 0.499 14.8% (10) 21.3% (10) 

HyMapfeat 71.9% 0.614 23.6% (10) 36.1% (10) 

AIRSARbs 75.7% 0.665 44.0% (10) 60.6% (10) 

AIRSARbio 70.0% .596 34% (10) 53.6% (10) 

HyMapref + 
AIRSARbs

70.3% 0.588 26.3% (10) 39.3% (10) 

HyMapfeat + 
AIRSARbs

80.9% 0.733 43.2% (10) 51.3% (5) 

HyMapref + 
AIRSARbio

61.9% 
 0.484 5.5% (10) 9.8% (10) 

HyMapfeat + 
AIRSARbio

77.6% 0.688 28.8% (10) 37.7% (10) 

 
** Note that these results show the optimal data fusion results of this study based on 
statistically rigorous accuracy assessment.  This provides an assessment of the tradeoffs 
that can be achieved with the various data inputs and provides validation of the Random 
Forest CART algorithm for mapping NFFL fuel models with fused datasets.  This 
approach did not, however, produce the best maps from an overall spatial pattern (see ML 
classification description above). 
 
Qualitative assessment of the optimal fused map data products suggest showed 
systematic errors such as misclassification of fuel model 5 as fuel model 8.  Upon close 
inspection of the field data, it was determined that outliers in the fuel model 5 training 
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data which included one or more live canopy trees were driving the statistics and 
producing sub-optimal classifications.  Outliers in other classes could be seen to be 
contributing to errors in other classes.  To address this, a second training dataset was 
selected using aerial photo interpretation, LiDAR data, and existing fuel maps and used 
to classify the HyMap and Landsat data with a Maximum Likelihood (ML) approach.  
The ML maps provided appear to represent a higher quality fuel model data product 
based on a qualitative comparison with the imagery and existing fuel maps. 

 

Recommendations 
 

Ecosystem-wide Remote Sensing Derived Base map: 
A base map should be developed using SAR data from a satellite platform.  Basing this 
mapping on SAR data will take advantage of this superior data type for single data 
mapping of fuel loads and fuel models.  Use of a satellite platform will improve viewing 
geometry, reduce error (especially roll correction that can plague airborne platforms like 
AirSAR) and provide a cost effective system that will allow for repeat data collections.  
Currently, the recently launched ALOS PALSAR sensor is the most suitable for this 
application.  Several other satellite launches of polarimetric SAR sensors are planned 
over the next few years including high resolution X-, C-, L-, and P-band. 
 
Since there is already an ecosystem-wide fuels map (GYA fuels map based on the 
Cumulative Effects Model data) priority should focus on areas where fuels are not well 
mapped or where significant disturbances have changed the distribution of fuels.  In 
addition, remote sensing offers a standardized method of updating changing fuels over 
time.  Other priorities should include areas of higher risk to human life including the 
wildland urban interface where more detailed data would help decision makers. 

Field Data: 
High quality reference data are critical for both model building and validation using 
remote sensing.  Special considerations concerning spatial resolution and accuracy are 
required for field data to be suitable for integration into remote sensing data analysis.  As 
remote sensing is increasingly used on a large scale in the GYA to address fire 
management issues, an updated field data set will become an increasingly important 
resource.  If these measurements are made in a consistent manner from large 
homogeneous areas they can provide a physical link between image derived data and 
actual field measured foliar moisture. 
 
 

GIS Data Modeling 
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GIS data modeling is a mechanism for formal description of relationships between 
elements of a spatial database.  In this case data modeling provides a formal description 
of relationships between forests and fuel from the inter-related data elements and 
attributes accessible from remote sensing.  The data model needs to a) describe 
relationships between the different elements of forests, b) set the fuel properties of forests 
within the context of environmental variability in landscapes as described using GIS 
datasets for topography and other characteristics, c) provide a mechanism for linking fuel 
data with existing and future fire models, and d) link the pixel-based representation of 
remote sensing with stand and polygon representations of forests. 
 

GIS Data Management 
 

A geographic information system (ESRI ArcGIS) is used to manage all data layers and 
integrate final products using data modeling techniques.  A project GIS database was 
developed from the National Spatial Data Infrastructure Clearinghouse managed and 
maintained by the Geographic Information and Analysis Center (GIAC) at Montana State 
University.  These environmental data describe the study area’s underlying topography 
and other resources.  The forest fuel data model links to this topographic and 
environmental database through a wide variety of data management and processing tools 
provided by the GIS.  The database serves as an environment within which to integrate 
vegetation type, fuel, and biomass maps to create linkages with fire models.  For 
example, fuel spatial connectivity cannot be measured directly with remote sensing but 
can be created from the topology (geographical connectedness) of fuel parameters within 
the GIS.  Using data modeling to link the outputs from sensor fusion analyses with the 
geographic data management and analysis capabilities of GIS allows spatial 
characteristics of fuel to be described and measured.  These linkages can then be 
integrated with other properties for incorporation into fire models that require GIS layers 
as inputs.  Developing these linkages is a significant contribution of the project, 
providing a mechanism for rapid deployment of remotely sensed parameters into an 
analytical applications environment. 

 

 

A Data Model for Forest Fuel 
 

The data model developed for fuel attributes measured from remotely sensed data by 
YERC is shown in Figure 1.  This model provides a framework that describes 
relationships between image-derived fuel properties of different elements of forests, 
including tree, shrub, herbaceous, and downed wood layers, as well as tree crown and 
boles.  These are all elements that potentially can be measured using remote sensing, 
either at a pixel level or, with very high spatial resolution imagery relative to the size of 
the features in the landscape, at an individual tree level.  This suite of data model 
elements provides a structure that allows fully spatially disaggregated data, as available 
from remote sensing systems, to be stored.   
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The data model also allows these elements to be aggregated or otherwise combined to 
represent forest stands.  Stands can be defined by forest planting and harvesting plans, by 
analysis of the spatial variability of the forest characteristics as measured by remote 
sensing, or from other definitions.  Once defined, the attributes for stands potentially 
include a very wide variety of values including total, maximum, mean, variance for 
biomass in each of the tree, shrub, herbaceous, and downed wood components that 
comprise the stand.  A GIS can compute these values for each stand from the pixel level 
description of forests once stands are defined. 
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Figure 1.  Data model for forest fuel descriptions derived from remotely sensed imagery 

 

Currently, only some of this data model can be populated from remote sensing.  For 
example, the data available from remotely sensed imagery do not distinguish live, dead, 
and foliage biomass in tree crowns, nor is basal area measured.  Shrub and herbaceous 
layers and downed wood were also not measured.  However, these may be capable of 
measurement in the future when a greater number of attributes for the data model can be 
populated. 

 

 

The Data Model and Fire Models 
 

The 10m pixel size of the radar imagery provides a very fine resolution for measurements 
of tree and fuel properties and this gives a very rich and detailed spatial description of 
variability in fuel properties for those variables that are measured.  Similarly, 
environmental data, particularly topography, are available with a comparable high spatial 
resolution.   

 

Although pixel-level data can be spatially aggregated and otherwise simplified to provide 
input to existing fire models, high spatial resolution remote sensing, as used here, as a 
data source for fuel property measurement fundamentally challenges many current fire 
models that have been developed with a particular set of environmental and fuel variables 
as inputs and with a different form of spatial representation (e.g. polygons).  We envision 
that the opportunities provided by remote pixel-level measurement and representation of 
what is potentially a very large number of fuel properties will stimulate development of a 
new class of fire models. 

 

Cellular models that operate on raster format data in GIS are an obvious candidate 
approach for novel fire models and could fully exploit the opportunities provided by 
remote sensing measurement of fuel properties.  Cellular automata (CA), as a class of 
cellular model, operate on a regular grid that describes variability in one or more 
characteristics across space and explicitly include time dynamics as an element of 
processing.  Since CA use a pixel-based representation they can use the data provided by 
remote sensing at its native (full) resolution.  In CA, the change in state or condition of a 
pixel between time steps is defined by a series of rules1 (‘Rules’ refer to conditional rules 
(e.g. if..then..else…) as well as equations and other functions that describe the relation 
between the start and subsequent condition or state of a cell.) that are applied based on 
both the attributes of a location and its neighbors.  CA can use many input layers 
describing different attributes of a location and can thus include the full range of 
attributes documented in the data model.  Because a CA can also consider the attributes 
of neighboring locations they excel at modeling diffusion processes.  One CA model of 
fire spread currently exists, the HOT (Highly Optimized Tolerance) model from UCSB, 
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but this uses different variables than developed in this project.  A focused effort on CA 
modeling for fire spread and behavior linked to development of fuel properties from 
remote sensing would provide insight that would develop the new class of fire models we 
envision. 
 

 

Cartographic Representation and Visualization 
 

 
Remote sensing potentially provides extremely large volumes of data in terms of a) 
geographic area covered, b) minimum mapping unit or resolution (in the data provided 
here this is a spatial resolution of 10m x10m), c) in the measurement precision for 
variables, for example with radar data each pixel has a measured crown and bole 
biomass, and d) in the number of variables that describe fuel.  Adequately representing 
these data presents a number of challenges that quickly exceed the capabilities of 
traditional representation using paper maps.  The fine scale (resolution) detail is beyond 
the capability of paper maps to resolve, the information content of a map that presents 
data (as opposed to a generalized representation of the data) is too high for visual use, 
and since the continuous spatial representation of fuel properties provides little 
information that easily delimits homogenous areas, many alternate paper map realizations 
of a remotely sensed dataset are possible.  Stand or species maps may provide spatial 
boundaries that can be used to generalize fuel data.  These issues with paper map 
representation contrast with the opportunities provided by high spatial resolution imagery 
for numerical modeling of fire spread and computer-based exploration of the data using 
GIS in which individual values can readily be found.   
 
The goal of this part of the project is to produce cartographic representations at 1:24,000 
and 1:100,000 scales as maps that display both the detailed local content and regional 
summaries of the database in a format that can be used by fire managers.   
 
Approach 
 
Paper maps at each scale were produced by creating a simplified classification of fuel 
load based on generalized categories of biomass for the bole and crown layers from the 
radar data.  The maps use a combined classification for the crown and bole data taken 
together to display at whether the biomass values are low/medium/high.  This is 
considered to help to identify potential problem areas.   

 
Each of the crown and biomass layers was reclassified using ESRI ArcGIS Spatial 
Analyst extension into three categories: low, medium, and high. The user is able to 
choose cutoff levels that identify low, medium and high biomass for the crown and bole 
very easily in ArcGIS; these can be absolute values selected independently of the data or 
can be based on the data.  The bole and crown reclassification represents the two layers in 
simplified form with the following values for each layer 
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Bole.   Low:  1 Medium:   2 High:   3 
Crown. Low:10 Medium: 20 High: 30 
 

After reclassification, the two layers are combined and the 1,2,3/10,20,30 values summed 
to produce a single classification including both layers.  For example, a pixel with a high 
bole value and low crown value would have a combined value of 13.  The resulting 
classes for the map are: 
 
 

Crown Bole 
Low Low 
Medium Low 
High Low 
Low Medium 
Medium Medium 
High Medium 
Low High 
Medium High 
High High 

 
This combined classification identifies polygons sharing combinations of crown and bole 
biomass for presentation at 1:100,000 and 1:24,000 scales.  Figures 2 and 3 illustrate the 
1:100,000 scale and 1:24,000 scale maps respectively.  Paper maps at each scale 
accompany this report. 
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Figure 2.  Illustration of the 1:100,000 scale map 
 
 
Because this relatively simple process of generalization results in loss of a considerable 
amount of geographically local information about variation in biomass in each of the 
crown and bole, the map polygons are additionally labeled with their computed mean 
value for crown and bole biomass.  Standard deviations, as a measure of variation within 
the generalized polygons can also be included.  It is important to note that the mean 
values for polygons are calculated from the original data describing crown and bole 
biomass.   

 
Limitations 
 
Generalization always results in loss of information.  Knowing what information is being 
lost is potentially important and we suggest that these simple processes for map 
production are best used interactively with fire managers.   
 
Additionally, there remains hardware limitations associated with handling the very 
large data volumes derived from imagery.  These are more considerable in GIS than 
in remote sensing software since the GIS adds topological and database properties 
to the data resulting in large processing and storage overheads.  The file sizes we 
used limited the potential for automation of map production and labeling but 
smaller areas of interest or larger computers may ease this problem.  
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Figure 3.  Illustration of 1:24,000 scale map 
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Suggested improvements 
 
There are several alternate methods for mapping.  One approach would be to use a 
vegetation type (species) data layer for the area (or stands or management blocks, as 
suggested in the data model) to identify homogenous areas.  However, the vegetation 
datasets we examined did not show good agreement with the biomass data – biomass did 
not change in value in association with the mapped vegetation types.  This may be the 
result of differences in date of data collection or inaccuracy in classification of vegetation 
types.  A second approach is to use spatial analysis to explore neighborhood and zonal 
statistics to identify relatively homogenous areas to map as polygons.  This typically 
leads to a very large number of small polygons (many are a single pixel in size) which 
presents problems in both interpretation of the maps and with file sizes.  We conclude 
that the simple approach described above, applied interactively with fire managers, offers 
the best compromise between information content and computational tractability; the 
interactive process itself will also provide insights into the variability and values for fuel 
biomass across a study area and this will have benefits in understanding fuel distribution 
across landscapes. 
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Appendix  I 
 

Data Files 
The following table provides a brief description of all data files provided as deliverables 
and currently available at the following FTP site: vesta.geog.ucsb.edu (username: 
anonymous, password: your email address) in the folder /pub/halligan.  Files with no 
extension ( or with the extensions ‘.flt’ or ‘.map’) are ENVI binary image files, filenames 
with ‘.hdr’ extensions are ENVI header files.  Files with the extension ‘.dsr’ are ENVI 
density slice files which can be used to reconstruct the color scheme used to display 
ENVI images.  Files with ‘.jpg’ are JPEGs and ‘.jgw’ are ESRI world files associated 
with those JPEGs, ‘.tif’ are TIFF files or GeoTiffs, and ‘.tfw’ are   ESRI world files 
associated with a given TIFF (note that true GeoTiffs will not need this file, but some 
files here are TIFF not GeoTIFF format).  Other file extensions include ‘.bmp’ for 
Windows bitmap images, ‘.pdf’ for Adobe compatible PDF files, ‘.xls’ for Microsoft 
Excel files, and ‘.html’ for HTML (web) files.  Files with ‘.rar’ extensions are 
compressed archive files which can be opened with Winzip, Winrar or other archive 
software. 
 

airsar_10m_bole_class2.map 
airsar_10m_bole_class2.map.hdr 
airsar_10m_bole_class2.map_geotiff.tif 
airsar_10m_bole_class2.map_jpg.jgw 
airsar_10m_bole_class2.map_jpg.jpg 

AIRSAR derived bole biomass (Mg/ha) binned 
into classes 

airsar_10m_bole_final.flt 
airsar_10m_bole_final.flt.hdr 
airsar_10m_bole_final2.flt 
airsar_10m_bole_final2.flt.hdr 

AIRSAR derived bole biomass (Mg/ha) - 
continuous values 

airsar_10m_crown_class2.hdr 
airsar_10m_crown_class2.map 
airsar_10m_crown_class2.map_geotiff.tif 
airsar_10m_crown_class2.map_jpg.jgw 
airsar_10m_crown_class2.map_jpg.jpg 

AIRSAR derived crown biomass (Mg/ha) binned 
into classes 

airsar_10m_crown_final.flt 
airsar_10m_crown_final.hdr 

AIRSAR derived crown biomass (Mg/ha) coarse 
scale 

airsar_10m_crown_final2.flt 
airsar_10m_crown_final2.hdr 

AIRSAR derived crown biomass (Mg/ha) fine 
scale 

bole_biomass_classes_legend.jpg JPEG of legend that matches 
airsar_10m_bole_class2.map 

crown_biomass_classes_legend.jpg JPEG of legend that matches 
airsar_10m_crown_class2.map 

file_list.txt text file listing all files on FTP site 
fuels_sampling_protocol_2003.doc Sampling protocol used for field data collection 
hymap_airsar_Canyon_sub_RFclass100tree20var_maj3 
hymap_airsar_Canyon_sub_RFclass100tree20var_maj3.hdr 
hymap_airsar_Canyon_sub_RFclass100tree20var_maj3_geotiff.tif 
hymap_airsar_Canyon_sub_RFclass100tree20var_maj3_jpg.jgw 
hymap_airsar_Canyon_sub_RFclass100tree20var_maj3_jpg.jpg 

HyMap and AIRSAR data fusion (level 2) result 
for the Canyon subset 

hymap_airsar_NE_sub_RFclass100tree20var_maj3 HyMap and AIRSAR data fusion (level 2) result 
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hymap_airsar_NE_sub_RFclass100tree20var_maj3.hdr 
hymap_airsar_NE_sub_RFclass100tree20var_maj3_geotiff.tif 
hymap_airsar_NE_sub_RFclass100tree20var_maj3_jpg.jgw 
hymap_airsar_NE_sub_RFclass100tree20var_maj3_jpg.jpg 

for the NE Corner subset 

hymap_airsar_OF_sub_RFclass100tree20var_maj3 
hymap_airsar_OF_sub_RFclass100tree20var_maj3.hdr 
hymap_airsar_OF_sub_RFclass100tree20var_maj3_geotiff.tif 
hymap_airsar_OF_sub_RFclass100tree20var_maj3_jpg.jgw 
hymap_airsar_OF_sub_RFclass100tree20var_maj3_jpg.jpg 

HyMap and AIRSAR data fusion (level 2) result 
for the Old Faithful subset 

hymap_and_landsat_ML_class_key.bmp NFFL fuel class legend for HyMap and Landsat 
ML classifications 

HymapMLEclassX10kPlusAIRSARcrownFinal_geotiff.tfw 
HymapMLEclassX10kPlusAIRSARcrownFinal_geotiff.tif 
HymapMLEclassX10kPlusAIRSARcrownFinal_legend.bmp 
HymapMLEclassX10kPlusAIRSARcrownFinal_masked 
HymapMLEclassX10kPlusAIRSARcrownFinal_masked.dsr 
HymapMLEclassX10kPlusAIRSARcrownFinal_masked.hdr 

HyMap and AIRSAR data fusion (level 3) result 
for entire fusion subset 

hyper-sar_fusion_tables-figures1.pdf 
hyper-sar_fusion_tables-figures2.pdf 

PDF of figures and tables for data fusion (levels 1 
and 2) results 

landsat_nffl70adjusted_masked 
landsat_nffl70adjusted_masked.hdr 
landsat_nffl70adjusted_masked_geotiff.tif 
landsat_nffl70adjusted_masked_jpg.jgw 
landsat_nffl70adjusted_masked_jpg.jpg 

NFFL fuel models mapped on 1999 Landsat data 
using Maximum Likelihood classification and 
photo interp training points 

landsat_sma.rar 

Archive file containing Spectral Mixture Analysis 
results for Landsat 1999 image using field spectra 
as endmembers - shows fuel condition including 
fraction of live vs. dead vegetation 

LandsatMLEclassX10kPlusAIRSARcrownFinal_legend.bmp BMP file of legend that matches 
LandsatMLEclassX10kPlusAIRSARcrownFinal  

LandsatMLEclassX10kPlusAIRSARcrownFinal_masked 
LandsatMLEclassX10kPlusAIRSARcrownFinal_masked.dsr 
LandsatMLEclassX10kPlusAIRSARcrownFinal_masked.hdr 
LandsatMLEclassX10kPlusAIRSARcrownFinal_masked_geotiff.tfw 
LandsatMLEclassX10kPlusAIRSARcrownFinal_masked_geotiff.tif 

Landsat (1999) and AIRSAR data fusion (level 3) 
result for entire fusion subset 

saatchi_fuel_body.pdf Sassan Sattchi's AIRSAR manuscript - text 
saatchi_fuel_figures.pdf Sassan Sattchi's AIRSAR manuscript - figures 
saatchi_fuel_tables.pdf Sassan Sattchi's AIRSAR manuscript - tables 
yerc_01-02_10m_mle 
yerc_01-02_10m_mle.hdr 
yerc_01-02_10m_mle_geotiff.tif 
yerc_01-02_10m_mle_jpg.jgw 
yerc_01-02_10m_mle_jpg.jpg 

NFFL fuel models mapped using HyMap data and 
Maximum Likelihood classification and photo 
interp training points 

yerc_02_10m_sma 
yerc_02_10m_sma.hdr 
yerc_03_10m_sma 
yerc_03_10m_sma.hdr 

Spectral Mixture Analysis results for HyMap 
imagery using field spectra as endmembers - 
shows fuel condition including fraction of live vs. 
dead vegetation 

yerc_03-04_10m_mle 
yerc_03-04_10m_mle.hdr 
yerc_03-04_10m_mle_geotiff.tif 
yerc_03-04_10m_mle_jpg.jgw 
yerc_03-04_10m_mle_jpg.jpg 

NFFL fuel models mapped using HyMap data and 
Maximum Likelihood classification and photo 
interp training points 
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yerc_04_10m_sma 
yerc_04_10m_sma.hdr 
yerc_05_10m_sma 
yerc_05_10m_sma.hdr 

Spectral Mixture Analysis results for HyMap 
imagery using field spectra as endmembers - 
shows fuel condition including fraction of live vs. 
dead vegetation 

yerc_05-06_10m_mle 
yerc_05-06_10m_mle.hdr 
yerc_05-06_10m_mle_geotiff.tif 
yerc_05-06_10m_mle_jpg.jgw 
yerc_05-06_10m_mle_jpg.jpg 

NFFL fuel models mapped using HyMap data and 
Maximum Likelihood classification and photo 
interp training points 

yerc_06_10m_sma 
yerc_06_10m_sma.hdr 
yerc_07_10m_sma 
yerc_07_10m_sma.hdr 

Spectral Mixture Analysis results for HyMap 
imagery using field spectra as endmembers - 
shows fuel condition including fraction of live vs. 
dead vegetation 

yerc_07-08_10m_mle 
yerc_07-08_10m_mle.hdr 
yerc_07-08_10m_mle_geotiff.tif 
yerc_07-08_10m_mle_jpg.jgw 
yerc_07-08_10m_mle_jpg.jpg 

NFFL fuel models mapped using HyMap data and 
Maximum Likelihood classification and photo 
interp training points 

yerc_08_10m_sma 

yerc_08_10m_sma.hdr 

Spectral Mixture Analysis results for HyMap 
imagery using field spectra as endmembers - 
shows fuel condition including fraction of live vs. 
dead vegetation 

yfp_field_data.rar 
Archive file containing field data including 
spreadsheet, shapefile for full dataset as well as an 
HTML page for each plot including photos 

yogi_01_10m_sma 

yogi_01_10m_sma.hdr 

Spectral Mixture Analysis results for HyMap 
imagery using field spectra as endmembers - 
shows fuel condition including fraction of live vs. 
dead vegetation 

yogi_01-2b_10m_mle 
yogi_01-2b_10m_mle.hdr 
yogi_01-2b_10m_mle_geotiff.tif 
yogi_01-2b_10m_mle_jpg.jgw 
yogi_01-2b_10m_mle_jpg.jpg 

NFFL fuel models mapped using HyMap data and 
Maximum Likelihood classification and photo 
interp training points 

yogi_2b_10m_sma 

yogi_2b_10m_sma.hdr 

Spectral Mixture Analysis results for HyMap 
imagery using field spectra as endmembers - 
shows fuel condition including fraction of live vs. 
dead vegetation 

A table of RS data products and deliverable provided to USGS. 
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Appendix II  
 
Deliverables Crosswalk Table 

Proposed Delivered Status 
Field-validated, high 
resolution fuel maps of the 
northern section of the 
Greater Yellowstone 
Ecosystem.  These maps 
will be based on (a) fused 
multispectral and SAR 
data, and (b) fused, 
atmospherically corrected 
hyperspectral and terrain 
corrected SAR data.  The 
maps will show vertical 
and horizontal distribution 
of consumable biomass 
according to vegetation 
species, including such 
items as vegetation type, 
fuel type, tree height, 
percent canopy cover, 
distribution of live versus 
dead vegetation, and total 
biomass and biomass 
components according to 
vegetation structure.  The 
maps will be of immediate 
use to fire managers in 
Yellowstone National Park 
and the adjacent national 
forest units.  Data products 
will provide valuable 
information to aid in the 
assessment of current 
stand conditions, 
management of fuels, fire 
prevention, and the 
direction of fire response.  
All products will be geo-
referenced GIS layers 
(ARC/INFO format 

AIRSAR derived bole biomass (Mg/ha) 
binned into classes  

AIRSAR derived bole biomass (Mg/ha) - 
continuous values  

AIRSAR derived crown biomass (Mg/ha) 
binned into classes  

AIRSAR derived crown biomass (Mg/ha) 
coarse scale  

AIRSAR derived crown biomass (Mg/ha) 
fine scale  

HyMap and AIRSAR data fusion (level 2) 
result for the Canyon subset 

HyMap and AIRSAR data fusion (level 2) 
result for the NE Corner subset 

HyMap and AIRSAR data fusion (level 2) 
result for the Old Faithful subset 

HyMap and AIRSAR data fusion (level 3) 
result for entire fusion subset 

NFFL fuel models mapped on 1999 
Landsat data using Maximum 
Likelihood classification and photo 
interp training points  

Landsat (1999) and AIRSAR data fusion 
(level 3) result for entire fusion subset 

NFFL fuel models mapped using HyMap 
data and Maximum Likelihood 
classification and photo interp training 
points  

Spectral Mixture Analysis results for 
HyMap imagery using field spectra as 
endmembers - shows fuel condition 
including fraction of live vs. dead 
vegetation  

NFFL fuel models mapped using HyMap 
data and Maximum Likelihood 
classification and photo interp training 
points  

Spectral Mixture Analysis results for 
HyMap imagery using field spectra as 
endmembers - shows fuel condition 
including fraction of live vs. dead 

Done 
 
Done 
 
Done 
 
Done 
 
Done 
 
Done 
 
Done 
 
Done 
 
Done 
 
Done 
 
 
 
Done 
 
Done 
 
 
Done 
 
 
 
Done 
 
 
Done 
 
 
 
Done 
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vegetation  
NFFL fuel models mapped using HyMap 

data and Maximum Likelihood 
classification and photo interp training 
points 

Combined crown and bole biomass, 
1:100,000 

Combined crown and bole biomass, 
1:24,000 

 

Done 
 
Done 

Precise, field-validated 
algorithms and processes 
for creating fuel maps at 
scales suitable for 
operational fuel and fire 
management programs.  
The algorithms will 
include terrain correction, 
sensor fusion, and GIS 
data modeling, and focus 
most strongly on SAR and 
hyperspectral data.  These 
algorithms will allow 
accurate, efficient 
evaluation of wildland fuel 
and fire/hazard parameters 
across a wide range of 
ecological settings.  
Outputs from the 
algorithms will be directly 
compatible with existing 
fire models.   Because the 
study area includes a wide 
variety of vegetation 
types, terrain conditions, 
and fuel loadings, the 
algorithm and processes 
developed for the study 
area should be usable over 
much of the western US. 

 

VIPER tools 
• SA Create Spectral Libraries 
• Manage Spectral Libraries 
• Select Optimal Endmembers for SMA 
• Knowledge-based Endmember 

Selection 
• Calculate SMA Fractions and 

Determine Best-fit Models 
• Post-process SMA/MESMA Results 
R terrain correction  
Three fusion algorithms  
• Level 1 
• Level 2 
• Level 3 
NFFL classification models 
 
 

 
 
 
 
 
 
 
Done 
 
 
 
 
 
 
 
 
Done 
Done 
 
 
 
Done 

A decision matrix table 
capable of assisting 
wildland managers in 
determining the relative 
cost versus comparative 

Table shown on page 12  

 
 
Done 
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utility of selecting 
remotely sensed data of 
high and low levels of 
spatial and spectral 
resolution, plus the 
applicability of terrain 
correction and sensor 
fusion for discriminating 
the key fire/fuel 
parameters shown in Table 
6.  The matrix will be 
derived from test case fuel 
maps created for 
subsections of the study 
area that involve differing 
landscapes, fuel loading, 
and cover type.  The 
decision matrix will 
include such items as 
species identification, land 
cover type determination, 
prediction of vertical and 
horizontal biomass 
distribution, userability, 
relative cost, and time and 
complexity of fuel map 
creation.  Along with the 
decision matrix, we will 
provide recommendations 
to wildland managers on 
selecting the appropriate 
data requirements for the 
intended mapping 
application, and on the 
cost-effectiveness and 
utility of different remote 
sensing data types and 
methods for various fuel-
management applications. 
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Index of map products listed in the Crosswalk Table.  The different sensor’s footprints 
are shown. Maps using multiple sensors cover the intersection of the different sensors. 
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