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Introduction 
 
This report summarizes accomplishments, key findings, and final products from Project 01-1-4-
09 funded by the Joint Fire Science Program, “A novel approach to regional fuel mapping: 
linking inventory plots with satellite imagery and GIS databases using the Gradient Nearest 
Neighbor method” (also referred to as the ‘GNNFire’ project). This report is accompanied by 
DVDs containing all project deliverables in electronic format (see Appendix 4). This report and 
final products also can be viewed and downloaded from our website, 
http://www.fsl.orst.edu/lemma/gnnfire. LEMMA is the Landscape Ecology, Modeling, Mapping, 
and Analysis research team responsible for GNNFire and several other projects. 
 
 
Project Description 
 
This project investigated use of the Gradient Nearest Neighbor (GNN) method for mapping 
vegetation and fuels in three contrasting ecoregions in the Western US. The GNN method uses 
multivariate direct gradient analysis to link field plot data, satellite imagery, and maps of 
environmental variables in a raster GIS database. Individual pixels are associated with forest 
inventory plots that have the most similar spectral and environmental characteristics. A suite of 
detailed plot variables is then imputed to each pixel, allowing simultaneous and consistent 
predicting of a wide range of vegetation attributes. Because the plot-level variables are attached 
to the GIS database, a wide array of summary variables and classifications can be portrayed to 
meet different objectives. 
 
At the time of our proposal, GNN had been successfully used to generate forest vegetation maps 
suitable for detailed, stand-level modeling across a large multi-ownership province in coastal 
Oregon. However, the method had not been tested in other ecoregions, nor specifically for 
mapping fuels. Accurate regional maps of vegetation and fuels are increasingly needed for 
assessing fire hazard, planning fuel management, and modeling the behavior and effects of 
prescribed burns and wildfires. In order for such maps to be useful to land managers, they must 
accurately predict a large number of vegetation and fuel attributes across heterogeneous, multi-
ownership landscapes. We hypothesized that the flexibility of GNN, combined with its capacity 
for multivariate spatial predictions, would make it particularly useful for developing regional 
fuels maps. 
 
This study examined the utility of GNN for predicting fuel patterns in three prototype landscapes 
in coastal Oregon, northeastern Washington, and the California Sierra Nevada, which encompass 
vegetation from dense forests to rangelands in a mosaic of natural and human-dominated 
environments. Our two primary objectives were: (1) Develop a methodology for using 
multivariate statistical models and imputation to simultaneously map fuel characteristics, species 
composition, and forest structure as continuous variables across environmentally heterogeneous, 
multi-ownership landscapes using inventory plot data, remote sensing imagery, and 
environmental GIS data layers; and (2) apply this methodology to generate vegetation and fuel 
maps for pilot landscapes located in three distinctive ecoregion divisions in the western US. 
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Success in Meeting Original Project Objectives 
 
We met both of our primary study objectives. We developed a viable methodology for using 
GNN to successfully map both vegetation and fuels. The major new elements of this 
methodology include: 
 
1. Procedures for developing consistent estimates of dead fuel loadings, surface fuel models, and 
crown fuels variables for large plot databases incorporating data from multiple inventories. 
 
2. Methods for integrating plot inventories and remote sensing imagery from multiple dates into 
a consistent modeling framework. 
 
3. New methods of accuracy assessment that are specific to imputation methods. 
 
4. Use of GNN for mapping gradients in species composition and environment, which may prove 
useful to regional assessments of potential vegetation, fire regime, and fire regime condition 
class.  
 
We applied these methods to map fuels and vegetation in forested landscapes of our three study 
areas using GNN, and integrated the GNN maps with ancillary maps of nonforest and chaparral 
(California only) to develop complete spatial coverages. This report summarizes our key 
research findings and our research products and deliverables.  
 
A secondary objective in our proposal was to link our GNN databases and maps to the Fuel 
Characteristic Classification System (FCCS) (http://www.fs.fed.us/pnw/fera/fccs/). While this 
deliverable is close to completion, it is not final at the expiration of our grant period. We are 
behind schedule because the FCCS was well behind their own production schedule, and because 
the FCCS system does not contain the user functionality we were told to expect at the time the 
proposal was written and additional development efforts were required on our part. The batch 
mode for calculating FCCS fuelbeds and fire potentials requires that data adhere to the FCCS 
XML schema. This required that we develop a translator for converting standard inventory data 
to the XML schema used by FCCS for their fuelbeds. We are close to completing this work and 
hope that it will be readily transferable to other field plot databases.  
 
 
Key Findings 
 
C GNN models can be ‘tuned’ to increase map accuracy for different types of plot attributes. 

The use of multivariate statistics and imputation by GNN results in unique spatial modeling 
properties. As with most predictive models, alternative model forms can be specified to 
optimize for different objectives and outcomes. Indeed, this flexibility is a strength of GNN 
relative to other approaches of vegetation mapping. In our GNN modeling, we learned that 
we can greatly influence the accuracy and appearance (spatial patterning) of the final maps 
by changing the response variables used in model development, and the spatial resolution of 
the independent variables – particularly those derived from Landsat TM imagery. Different 
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GNN models can be specified based on study objectives and intended map applications. 
Rather than provide one GNN map for each study area, we have developed four models that 
illustrate major variations in model form: (1) species model, (2) species-size model, (3) 
structure model of fine grain, (4) structure model of coarse grain. Short descriptions of these 
four kinds of GNN models are included in the summary of deliverables. We expect that each 
model has advantages for certain applications, and seek feedback from map users as they 
exercise the maps. 

  
C The major factor limiting site-level map accuracy is the capability of Landsat TM imagery 

for characterizing forest structure. We assessed GNN map accuracy through cross-validation, 
in which map predictions were compared to ground measurements at plot locations. This 
local-scale prediction accuracy was better overall for measures of forest structure in Oregon 
than in Washington or California, but differences varied among forest attributes. The 
potential for accurately modeling fine-scale variability appears to be greatest in closed-
canopy, even-aged, conifer-dominated forests like those characteristic of coastal Oregon. We 
attribute this primarily to the reduced capabilities of Landsat TM data in discriminating many 
forest attributes within sparse-canopy forests, due to mixed reflectance signals within pixels 
of soil and other ground surfaces with vegetation. In future mapping efforts, incorporating 
other sources of remotely sensed imagery with high spatial and/or spectral resolution (e.g., 
ASTER or LIDAR imagery), as well as multi-date Landsat imagery, may be particularly 
important for mapping forest structure and fuels in drier, open-canopied forest types. 

 
C The GNN method is very effective at maintaining the range of variability of individual 

variables at the regional scale, as well as the covariance structure of multiple variables at the 
local scale. As an imputation method, GNN does not truncate the range of variability in the 
response variables like multiple regression and other parametric methods. Additionally, 
within-stand covariance structure is maintained when a single nearest-neighbor plot is 
imputed to each pixel. Therefore, GNN maps are well suited to applications where these map 
characteristics are important. In regional fire risk assessments, for example, it is most 
important to identify sites with extreme values of multiple variables (e.g., high surface fuel 
accumulations, high canopy bulk density, and low height to canopy base). These advantages 
of GNN imputation maps may come at the cost of prediction accuracy for local sites. 

 
C Environmental variation strongly influences the form and accuracy of GNN models. In areas 

where environmental gradients are long and strong, the environmental component of the 
GNN model (which is more strongly correlated with species composition) plays a stronger 
role in imputation (i.e., selection of nearest-neighbor plots) than does the Landsat component 
(which is more strongly correlated with forest structure). Environmental gradients in the 
Washington and California study areas were longer and stronger than in Oregon. 
Consequently, accuracy of our species predictions (presence/absence) was better in 
California and Washington than in Oregon, whereas prediction accuracy for measures of 
forest structure was better in Oregon.  

 
C We developed new methods of accuracy assessment that are specific to imputation methods. 

The ranking of candidate plots for imputation by their separation distance in multivariate 
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space provides for several innovative accuracy assessment products. Using the interplot 
distributions of distances, we can quantify the number of plots within a similarity threshold. 
We can use those similar plots to assess the amount of natural variability exhibited by 
individual attributes for a particular environmental envelope, thus providing a map of natural 
variability. We also can assess the number of inventory plots that bear similarity to a target 
mapping location and thus the degree to which the data inform predictions about that 
location. We refer to this product as the sampling sufficiency map. Because we are still 
evaluating the properties of these measures and their potential usefulness, they are not 
included in our final report. 

  
C Challenges are ongoing in communicating map accuracy in ways that are relevant to users, 

and that can help clarify appropriate applications of various maps. The quantification and 
visualization of map accuracy is complex and multi-dimensional. We continue to seek ways 
to communicate map accuracy that resonate with users. As developers of regional map 
products, we frequently encounter skepticism about map usefulness when local or pixel-scale 
accuracy is poor. Our maps are not appropriate for site-level, operational decisions, but in 
general should be used to guide planning and policy decisions at broader scales. We expect 
our ability to characterize GNN map quality in useful ways will evolve as we continue 
dialogue with map users over time. We are adding a feature on the GNNFire website to 
register GNN map users so we can follow up and seek feedback on their experiences. 

 
C GNN-Fire vegetation and fuels maps can be applied to carry out regional fire risk assessment 

using FLAMMAP and FARSITE. The raster GIS datasets produced for the three GNNFire 
study areas include all of the fuel and vegetation layers that are required for input into the 
FLAMMAP and FARSITE models (Anderson fuel model, canopy bulk density, height to 
base of live canopy, canopy cover, and stand height). To assess the potential for using these 
datasets with FLAMMAP, we split the Oregon Coast Range study area into six subregions 
and developed a FARSITE/FLAMMAP landscape file for each subregion. FLAMMAP runs 
were carried out for a range of wind and fuel moisture conditions. Results indicated that the 
potential for large areas of continuous crown fire was relatively low, mainly because of 
landscape fragmentation by young hardwood-dominated stands, clearcuts, and non-forested 
areas. However, several regional ‘hotspots’ of potential active crown fire behavior under 
extreme weather conditions were identified. 

 
C We have linked the GNN plot databases to the Fuel Characteristic Classification System 

(FCCS), but additional work is needed to evaluate reasonableness of the resulting GNN 
maps. The interface for FCCS (http://www.fs.fed.us/pnw/fera/fccs/) is designed to guide users 
to a default fuelbed, analogous to a stylized fuel model, and allow them to edit that fuelbed 
for their specific location before calculation of fire potentials. Subjecting inventory data to 
this editing scheme is excessively time-consuming as each inventory plot could take an hour 
or more to enter through the appropriate menus. Alternatively, the FCCS system has the 
capability of calculating fire potentials very rapidly, using a batch mode, if fuelbed files exist 
in the proper XML data format. We have developed a two step process that converts 
inventory data to a standard comma delimited format, derivable from any database- or 
spreadsheet-based data, followed by a translator to convert that data into FCCS fuelbeds in 
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their XML data format. We are close to completing this work and hope that it will be readily 
transferable to other field plot databases. We are behind schedule on linking to the FCCS 
because the FCCS was well behind their own production schedule, and because we were not 
aware that the FCCS batch mode required conversion of standard inventory data to an XML 
schema used by FCCS for their fuelbeds.  

 
 
Key findings related to data limitations 
 
C Nonforest and shrub cover types currently cannot be mapped using GNN due to limitations 

of regional plot data. The quality of GNN results are limited by the quality of data used in 
model development. While this is true for any modeling approach, it is especially true for 
imputation. There are no systematic, field-based samples of nonforest and shrub land cover 
types across all land ownerships available for any of our study areas. FIA does not install 
plots in areas classified as nonforest or shrubland. Although we apply GNN wall-to-wall, our 
data and models are only valid for the forested portions of our study areas. We used maps 
from ancillary sources to ‘mask out’ other land cover classes. The quality of available land 
cover data is mixed, and strongly influences the overall quality and usefulness of the GNN 
maps for applications to modeling fire hazard and behavior. This is especially true in 
heterogenous landscapes containing mixtures of nonforest, chaparral, woodland, and forest, 
such as in our California study area. All of the land cover maps we’ve examined consistently 
overestimate the area of nonforest, as determined by comparison with forest/nonforest calls 
for field plot locations. Examination of the area distributions in our accuracy assessment 
products (vegclass_error_matrix*.pdf) shows that most confusion in the GNN imputation 
maps is between nonforest areas and forested areas with sparse canopies. Looking ahead to 
future applications of GNN, development of more robust methods for mapping nonforest and 
shrublands for integration with GNN maps is an important research need. Such methods and 
data may result from LANDFIRE, the next version of NLCD, or other regional mapping 
projects, but were not available at the time of our study. 

  
C Plot database development remains the single greatest challenge and cost in implementing 

GNN. Despite progress that has been made towards standardized, regional forest inventories, 
considerable effort is still required to compile multiple inventories into a single, consistent 
database that spans all ownerships for regional mapping and analysis. This is particularly true 
for vegetation components other than live trees, such as understory vegetation, snags, down 
wood. Many of these vegetation attributes are important to assessing fuel conditions, fire 
hazard, and fire behavior. For example, we are distributing very few core variables for down 
wood (Appendix 3) because of inconsistencies across our six component plot databases in 
minimum size criteria and decay class methodology. At the time of our study, the FIA 
Annual Inventory had not been fully implemented, but when available these data will 
represent another positive step towards regional (even national) standardization of vegetation 
data elements. However, the temporal distribution of Annual plots (spread over 10-15 years 
within a given geographic location) will present a new challenge for mapping applications 
that rely on satellite imagery. 
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C Plot-level data for many fuels variables are insufficient for accuracy assessment using cross-

validation. Although it appears that prediction accuracy is poor for fuels variables that are 
below the forest canopy, and indeed one might expect low accuracy based on models that 
rely on Landsat data that senses the upper canopy, we have good reason to suspect the 
validity of our cross-validation for these variables. The cross-validation component of our 
map accuracy assessment is based on the assumption that the observed (plot) values are 
‘truth.’ In reality, this is not the case for several forest and fuel variables measured on the 
regional inventory plots. In particular, plot-based measurements of coarse and fine dead fuels 
are insufficient to characterize the plot or stand. For example, the sample of down wood on 
individual FIA plots was intended to be combined with other plots to characterize the down 
wood population within a forest stratum. Transect length is insufficient to reliably estimate 
down wood present within an individual plot area. Our cross-validation results for these 
variables therefore should be interpreted with caution.  

 
C There remains much variation and subjectivity in how fuels variables are measured or 

assigned in the field, including stylized fuel models. We derived our fuel variables and 
models from field-measured data using the most widely accepted and published methods. 
However, assigning these variables is still to some extent an art (e.g., assigning fuel models), 
and empirical approaches such as ours may yield very different results from those assigned 
via expert opinion. More research is needed to assess the sensitivity of follow-on analyses, 
such as with FARSITE, to variation in fuel variable calculation method. 

 
C GNN can potentially be applied to any landscape or ecoregion, but map reliability strongly 

depends on availability of relevant plot and spatial data. In particular, GNN will not yield 
acceptable map products for undersampled areas. In our study, we initially planned to 
include Sequoia and Kings Canyon National Parks in our California study area. However, 
after considerable effort and experimentation, we ultimately concluded that available plot 
data graciously provided by Park staff was unsuitable for GNN modeling. The provided data 
had been collected only along highway corridors in the western, low-elevation parts of the 
Parks, and key variables required for the GNN models, such as understory vegetation and 
stand age, were not collected. While the Park has an abundance of data on fuels, vegetation 
and trees, these data lie within different inventories. Our imputation method requires 
simultaneously sampled attributes within a single inventory (on the same plots). We revised 
our study area boundary to omit these parks, rather than distribute a map of poor quality. Our 
experience underscores the value of regional, systematic inventories that sample all 
ownerships. FIA Annual Inventory plots will soon be available for all National Parks, but 
were not yet available at the time of our study. 

 
 
Deliverables 
 
We produced all deliverables listed in our proposal, plus several additional products. Copies of 
all final products except our website and draft manuscript are provided in electronic format on 
the enclosed DVDs. The directory structure and file names for final products on the DVDs are in 
Appendix 4. All products on the DVDs are suitable for distribution and posting to websites. The 
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final maps and accuracy assessments produced for each of our three study areas using the GNN 
method also are available for download from our website 
(http://www.fsl.orst.edu/lemma/gnnfire), or will be provided upon request on DVD. Our 
manuscript is still in preparation, and is expected to be ready for submission to a refereed 
publication by the end of November 2005. We will provide JFSP a copy of the submitted 
manuscript at that time. 
 
GNN models and map products 
 
We are providing four alternative GNN models with associated products for each study area, for 
a total of 12 models. For each model we are providing the gradient (statistical) model, the 
resulting GNN imputation map, a map of nearest-neighbor distance, and a suite of accuracy 
assessment products, which are described below.  
 
The four kinds of GNN models are described in more detail in Appendix 1. Briefly, the models 
vary in their emphasis on species composition vs. forest structure, and in their degree of spatial 
filtering, which affects fine-scale heterogeneity in the imputation maps. We expect that each kind 
of model has advantages for certain applications, and we seek feedback from map users as they 
exercise our maps. The four kinds of GNN models are: (1) species model: emphasizes species 
composition, and does not use Landsat imagery; (2) species-size model, filtered: a ‘hybrid’ 
between the species and structure models, uses Landsat imagery that is median-filtered to reduce 
fine-scale heterogeneity; (3) structure model, filtered: emphasizes forest structure, uses Landsat 
imagery that is median-filtered to reduce fine-scale heterogeneity; (4) structure model, 
unfiltered: same as (3) but uses unfiltered satellite imagery, resulting in more fine-scale 
heterogeneity. Median filtering consists of moving a nine-pixel window across the image and 
assigning the median value for the nine pixels to the center pixel. 
 
 Gradient models (CANOCO files).– Documentation of the gradient (statistical) model used in 
GNN imputation. The documentation consists of the output (*.out) and solution (*.sol) files from 
canonical correspondence analysis (CCA) from the CANOCO software (version 4.5). The files 
list the explanatory variables used in the models and their coefficients. 
 
 GNN imputation maps.– Digital GNN imputation map, provided as 30-m-resolution ArcGIS 
grid, where the grid value is a unique plot number that links to the plot database. Selected fuels 
and vegetation variables from the plot database are joined as items in the grid to facilitate 
viewing and exploratory spatial analysis (e.g., in ArcMap or ArcView). Metadata for the fuels 
and vegetation variables are found in the plot databases. More detailed documentation of 
methods used in developing the fuels variables as part of this project are in Appendix 2. 
Descriptions of the core fuels and vegetation variables are in Appendix 3. With the GNN 
approach, map dates are determined by the vintage of the satellite imagery used to construct 
them. For the species-size and structure models, which rely heavily on Landsat data, map dates 
are 2000 (Washington and California) and 1996 (Oregon).  
 
We are distributing ‘masked’ versions of the GNN maps, where areas of nonforest land cover 
(and chaparral in California) developed from ancillary data sources have been embedded in the 
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GNN grids. The GNN models in this study apply only to forest land (areas currently or with the 
potential to support at least 10% tree cover), because a consistent regional plot sample of 
nonforest areas is unavailable. For our masks in Oregon and Washington we used 1992 National 
Land Cover Data (NLCD). In California, the nonforest mask was developed primarily from 
CALVEG (Classification and Assessment with Landsat of Visible Ecological Groupings) 
(http://www.fs.fed.us/r5/rsl/projects/classification/) data, with small areas of missing CALVEG 
data filled in with NLCD data. Unmasked versions of the GNN maps are available upon request, 
for users who would like to apply a nonforest mask of their own choosing. 
 
 GNN nearest-neighbor-distance maps.– Digital map where the grid value is the distance to 
the nearest-neighbor plot that was imputed to the pixel. Distance is unit-less Euclidean distance 
in eight-dimensional gradient space for the first eight CCA axes, with axes weighted by their 
explanatory power in the model (eigenvalues), and converted to integer grids. 
 
 GNN map accuracy assessments.– Accuracy for the Gradient Nearest Neighbor (GNN) maps 
has been assessed in several ways in order to reflect various standards. We are providing all of 
the following accuracy assessment products for GNN imputation maps from the species-size and 
structure models. For the species models, we are providing kappa statistics for presence/absence 
of common tree species ((2) below), and the histograms of inter-plot distances ((5) below). The 
accuracy assessment methods are described in Ohmann and Gregory (2002) and Ohmann et al. 
(in press). 
 

(1) Confusion matrix for vegetation classes defined by canopy cover, species composition 
(hardwood/conifer), and average tree size, from cross-validation. Rows in the tables 
represent observed (plot) values and columns represent GNN-predicted values for plot 
locations. Table values are numbers of plots.  

 
(2) Kappa statistics for vegetation classes, from cross-validation.  

 
(3) Kappa statistics for presence/absence of common tree species, from cross-validation, for 
species models only. 

 
(4) Scatterplots and correlations between GNN-predicted vs. ground-observed values for 
selected continuous vegetation and fuel variables, from cross-validation. 

 
(5) Distribution of forest area among vegetation classes, as predicted from the GNN models 
and as estimated from the systematic sample of grid plots. The histograms provide a regional 
view of overall accuracy. 

 
(6) Distribution of forest area among fuel models, as predicted from the GNN model and as 
estimated from the systematic sample of grid plots. The histograms provide a regional view 
of overall accuracy. 

 
(7) Histogram of all inter-plot distances in eight-dimensional gradient space, as a companion 
to the nearest-neighbor-distance grid. 
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Plot databases with metadata 
 
Relational database for each study area, provided as Microsoft Access files. The three plot 
databases contain all plot data used in GNN model development and mapping. Our primary 
original source of data was the Integrated Database (IDB) compiled by the Pacific Northwest 
Research Station’s Forest Inventory and Analysis Program. The IDB contains plot data from 
regional forest inventories conducted by PNW-FIA (periodic inventories on nonfederal lands), 
the USDA Forest Service (Current Vegetation Survey on National Forests in Region 6 and the 
periodic forest inventory in Region 5), and the Bureau of Land Management (BLM) on BLM 
lands in western Oregon. We acquired additional plot data for the North Cascades National Park 
in Washington and the Yosemite, Sequoia, and Kings Canyon National Parks in California, 
which were not sampled in the periodic FIA or National Forest System inventories. 
 
We derived summary variables from the source tree data at the forest class level, which are 
contained in the provided plot databases. In many cases this required the application of models to 
‘dub in’ values where data were missing, which are documented in the plot metadata. All GNN 
modeling was conducted at the forest class level. A forest class consists of all portions of a plot 
that sample forest land, including multiple forest condition classes where they are present. 
Condition classes are defined by contrasting areas of forest composition, size, density, and 
ownership, e.g., old growth adjacent to a young plantation (see FIA field manuals for more 
detail). 
 
Because of federal law concerning the confidentiality of plot ownership and FIA policy 
concerning the confidentiality of plot locations (X and Y coordinates), coordinates are not 
included. Values for explanatory variables associated with the plots also cannot be distributed 
because of the possibility of reverse-engineering to determine plot locations. Each database 
contains tables with descriptions and codes for all fuel and vegetation variables. 
 
Spatial data with metadata 
 
Rasters for all spatial variables used as explanatory variables (predictors) in the GNN models, 
and selected ancillary data layers are provided. Ancillary data layers include: study area 
boundaries, nonforest (Boolean) mask, and NLCD grids from which our masks were developed, 
and ownership class. All spatial data are provided as 30-m-resolution ArcGIS grids except the 
study area boundaries, which are ArcGIS polygon coverages. FGDC-compliant metadata 
accompanies each of these grids. All grids are co-registered and clipped to the study area 
boundaries. Projections are UTM zone 10 (Oregon and California) and UTM zone 11 
(Washington), datum NAD 1927, and map units are meters. 
 
Link to the Fuel Characteristic Classification System (FCCS) 
 
Our link to the FCCS system consists of two parts. The first part is a comma-delimited data 
format for inventory data, which can be exported from any database or spreadsheet program and 
should be readily transferable to other field plot databases. The second part is a ‘translator’ 
program written in PERL that will convert the comma-delimited plot data into a series of 



 11
separate files, one for each plot, in the XML format for FCCS fuelbeds. These files can be 
processed in batch mode by the FCCS system. Both the data format and the translator will be 
made available on our website. As the data format is subject to change, web distribution will 
ensure the availability of the most current version. While this deliverable is close to completion, 
it is not final at the expiration of our grant period. We are behind schedule because the FCCS 
was well behind their own production schedule, and because the FCCS system does not contain 
the user functionality we were told to expect at the time the proposal was written, and additional 
development efforts were required on our part (i.e., developing a translator to XML schema). 
 
GNN software 
 
The software for running GNN (program GNNRUN) allows other scientists and managers to 
apply the GNN method to other geographic areas and data. The software runs in MS-Windows 
2000/XP. To run the software, users must have their spatial data in the format of ESRI ArcGIS 
grids or Erdas Imagine files, and output files from gradient analysis conducted using either PC-
ORD or CANOCO software. The software is a work-in-progress, and we seek feedback from 
users on how we might improve it. A version with a graphical user interface (GUI) is currently 
under development. 
 
Websites 
 
The GNNFire project website provides information about our project and access to final 
products for download: http://www.fsl.orst.edu/lemma/gnnfire. At the time of this writing, most 
products are posted to the site, but we will continue to develop and populate the site with more 
information over the next few of months. 
 
Our project also is in the FIREHouse database and website 
(http://www.fs.fed.us/pnw/fera/firehouse), which links to the GNNFire website above. 
 
Our project is referenced from the PNW Research Station’s ‘Fire Tools and Databases’ page 
(http://www.fs.fed.us/pnw/publications/firetools.shtml), under ‘Improved Programs for 
Hazardous Fuels Reduction.’ 
 
Publications (GNNFire-specific) 
 
Pierce, KB, Jr, JL Ohmann, MC Wimberly, MJ Gregory, and JS Fried. In prep. Mapping 

wildland fuels and forest structure to support management and simulation modeling. 
Ecological Applications.  

 
Wimberly, MC, JL Ohmann, KB Pierce, MJ Gregory, and JS Fried. 2003. A multivariate 

approach to mapping forest vegetation and fuels using GIS databases, satellite imagery, and 
forest inventory plots. Proceedings of the Second International Wildland Fire Ecology and 
Fire Management Congress. Orlando, FL; 16-20 November 2003. American Meteorological 
Society. On the web 
(http://www.ams.confex.com/ams/FIRE2003/techprogram/paper_65758.htm) and CD-ROM. 
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Publications (related projects) 
 
Ohmann, JL, and MJ Gregory. 2002. Predictive mapping of forest composition and structure 

with direct gradient analysis and nearest neighbor imputation in coastal Oregon, USA. 
Canadian Journal of Forest Research 32:725-741. 

 
Ohmann, JL, MJ Gregory, and TA Spies. In press. Influence of environment, disturbance, and 

ownership on forest composition and structure of coastal Oregon. Ecological Applications. 
 
Wimberly, MC, and JL Ohmann. 2004. A multi-scale assessment of human and environmental 

constraints on forest land cover change on the Oregon (USA) coast range. Landscape 
Ecology 19:631-646. 

 
Presentations and workshops 
 
“Predictive vegetation mapping and current vegetation biodiversity in coastal Oregon.” Guest 

lecture, graduate-level course in remote sensing, Forest Resources Dept., OSU; Corvallis, 
OR; November 2002. (invited) (presented by Ohmann) 

 
“Predictive mapping of forest composition and structure with direct gradient analysis and 

nearest-neighbor imputation (the Gradient Nearest Neighbor method).” Focus session at the 
Joint Meeting of Fourth Annual Forest Inventory and Analysis Science Symposium and the 
Southern Forest Mensurationists; New Orleans, LA, November 2002. (invited) (presented by 
Ohmann) 

 
“Modeling and mapping vegetation composition and structure at broad spatial scales.” Science 

information-sharing seminar day, Pacific Northwest Region, Portland, OR, January 2003. 
(invited) (presented by Ohmann) 

 
“Predictive vegetation mapping and current vegetation biodiversity in coastal Oregon.” Botany 

and Plant Pathology Departmental seminar, OSU; Corvallis, OR; February 2003. (invited) 
(presented by Ohmann) 

 
“A novel approach to regional fuel mapping: linking inventory plots with satellite imagery and 

GIS database using the Gradient Nearest Neighbor method.” Joint Fire Science Program 
Principal Investigator Workshop; Phoenix, AZ; March 2003. (presented by Pierce) 

 
“Mapping live and dead forest fuels at the ecoregion scale in coastal Oregon with Landsat 

imagery and forest inventory plots.” Annual Symposium of the U.S. Regional Association of 
the International Association of Landscape Ecology; Banff, Alberta, Canada; April 2003. 
(presented by Ohmann) 

 
“Regional variation in Pacific Northwest forests: finding pattern in a messy world.” American 

Statistical Association, Oregon Chapter; Corvallis, OR; October 2003. (invited) (presented 
by Ohmann) 
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“Integrating plot and spatial data to assess vegetation biodiversity in a large, multi-ownership 

region.” Annual meeting of the Society of American Foresters, Buffalo, NY, October 2003. 
(invited) (presented by Ohmann) 

 
“A multivariate approach to mapping forest vegetation and fuels using GIS databases, satellite 

imagery, and forest inventory plots. 5th Symposium on Fire and Forest Meteorology and 2nd 
International Wildland Fire Ecology and Fire Management Congress; Orlando, FL; 
November 2003. (presented by Wimberly) 

 
“A novel approach to regional fuel mapping: linking inventory plots with satellite imagery and 

GIS database using the Gradient Nearest Neighbor method.” Joint Fire Science Program 
Principal Investigator Workshop; Phoenix, AZ; April 2004. (presented by Ohmann) 

 
“Assessing spatial uncertainty in landscape vegetation maps created with imputation 

procedures.” Annual Symposium of the U.S. Regional Association of the International 
Association of Landscape Ecology; Las Vegas, NV; April 2004. (presented by Pierce) 

 
“Influences of landscape structure, drought, and wind on crown fire spread in forest landscapes.” 

Annual Symposium of the U.S. Regional Association of the International Association of 
Landscape Ecology; Las Vegas, NV; April 2004. (presented by Wimberly) 

 
“Spatial modeling of regional vegetation using field plots and geospatial information: a software 

framework for the Gradient Nearest Neighbor method.” Booth and poster presented at the 
Software and Modeling Demonstration and Swap Meet, spanning a full day at the Annual 
Symposium of the US Regional Association of the International Association of Landscape 
Ecology; Las Vegas, NV; April 2004. (presented by Gregory and Ohmann) 

 
“Regional-scale mapping of fuels: integrating Gradient Nearest Neighbor (GNN) and Fuels 

Characteristics Classification System (FCCS).” Workshop on hazardous fuel and vegetation 
treatment; PNW Station and Region 6, USDA Forest Service; Bend, OR; May 2004. 
(invited) (presented by Don McKenzie) 
 

“Landscape connectivity and the potential for catastrophic fire in forested landscapes.” Annual 
Ecological Society of America Meeting. Portland, OR, August 2004. (presented by 
Wimberly) 

 
“Mapping forests of the Pacific Northwest: structure, species and uncertainty.” Annual 

Ecological Society of America Meeting; Portland, OR; August 2004. (presented by Pierce) 
 

“Scaling plot inventories for regional assessments.” Annual Symposium of the U.S. Regional 
Association of the International Association of Landscape Ecology; Syracuse, NY; March 
2005. (presented by Pierce) 

 



 14
“Detailed forest vegetation maps for monitoring landscape-scale habitat and riparian conditions: 

CLAMS and beyond.” 1st annual remote sensing workshop, Pacific Northwest Aquatic 
Monitoring Partnership; Portland, OR; May 2005. (invited) (presented by Ohmann) 

 
“Creating wall-to-wall forest vegetation maps for the Pacific Northwest: lessons learned and 

future plans.” Region 10 FIA Users Forum; Juneau, AK; June 2005. (invited) (presented by 
Ohmann) 

 
“Gradient Nearest Neighbor imputation mapping in support of risk assessment.” Workshop for 

evaluating quantitative techniques  for deriving national scale data for assessing and mapping 
risk; organized by Forest Health Technology Enterprise Team, Forest Health Protection, 
USDA Forest Service; Ft. Collins, CO; July 2005. (invited) (presented by Pierce)  

 
“Predictive mapping of forest composition and structure with direct gradient analysis and 

nearest-neighbor imputation for regional policy analysis and ecological research.” Annual 
meeting of American Statistical Assoc.; Minneapolis, MN; August 2005. (invited) (presented 
by Ohmann) 

 
“Regional vegetation mapping in support of risk assessment.” Workshop on regional risk 

assessment methodologies.” Organized by Western Wildlands Environmental Threat 
Assessment Center, USDA Forest Service; Portland, OR; September 2005.(invited) 
(presented by Pierce) 

 
“Gradient Nearest Neighbor imputation based on FIA plots – useful tool or lying with maps?” 

Seminar at Forestry Sciences Lab; Portland, OR; August 2005. (invited) (presented by 
Ohmann) 

 
“What is the probability that I-30 runs through Fort Worth? Incorporating uncertainty into map 

use.” Annual meeting of the Society of American Foresters; Ft. Worth, TX; October 2005. 
(invited) (presented by Pierce) 

 
“Healthcare and forestry - Half-Life 2: meet serious games modding.” Serious Games Summit: 

Interactive Solutions for Shared Challenges; Washington, DC; October 2005. (invited) 
(presented by Tim Holt) 

 
“A mid-scale approach to mapping forest fuel and fire hazards at the wildland-urban interface by 

imputation and modeling of inventory plot data.” Seventh Annual Forest Inventory and 
Analysis Science Symposium; Portland, ME, October 2005. (presented by Fried) 

 
“Gradient Nearest Neighbor imputation for local scale basal area mapping: FIA 2005 

Symposium interpolation contest.” Seventh Annual Forest Inventory and Analysis Science 
Symposium; Portland, ME, October 2005. (presented by Gregory) 

 
“A novel approach to regional fuel mapping: linking inventory plots with satellite imagery and 

GIS databases using the Gradient Nearest Neighbor method.” Joint Fire Science Program 
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Principal Investigator Workshop, San Diego, CA, November, 2005. (presented by Ohmann) 
(poster) 

 
Site visits to our Washington and California study areas 
 
Our research team conducted two site visits to our study areas: Washington in summer 2003 and 
California in summer 2004. Most of our team members were already familiar with the Oregon 
study area from previous studies and due to its close proximity, so no formal site visit was 
conducted. In addition, GNN vegetation maps were already available for coastal Oregon, and 
conversations with numerous forest and fire managers in this region revealed limited interest in 
fuels- and fire-related maps. 
 
We spent a week in each of the other two study areas meeting with potential clients for our map 
products, experts in local forest and fire ecology, and other scientists and managers interested in 
developing their own GNN models. We conducted extensive field tours of the study areas to 
familiarize ourselves with local forest and landscape conditions and management issues, in many 
cases accompanied by local experts and potential clients. The Washington site visit led to a 
request for us to expand our study area to encompass all National Forest lands in eastern 
Washington, for use analyses in support of National Forest Plan revision. 
 
Follow-on grants, projects, and use of GNN maps by agencies 
 
Based on successes with GNNFire and previous projects, the LEMMA research team has taken 
on several new studies involving spatial modeling of forest vegetation across the Pacific Coast 
States. All projects are being conducted with an eye towards interfacing with and complementing 
related work by LANDFIRE.  
 
In 2004 we began research as part of the Central Oregon Landscape Analysis (COLA) pilot 
study to test data and methods for landscape characterization and modeling for use in the Oregon 
Department of Forestry’s (ODF’s) Assessment of Forest Sustainability in Oregon. The LEMMA 
team used GNN to develop gradient models and maps of existing forest vegetation. The maps 
interface with state-and-transition models for analysis of future landscape dynamics based on 
assumptions about natural and human disturbances.  
 
In fall 2005, LEMMA will begin a new program to model, map, and monitor forest vegetation 
and land cover of the Pacific Coast States (Oregon, California, and Washington) on a continuing 
basis on a five-year remeasurement cycle. This program of mapping and research is coordinated 
with ongoing FIA inventories, other agency programs for vegetation mapping and landscape 
analysis, the ODF’s Assessment, and  the Pacific Northwest Landscape Analysis (PNLA) study. 
The PNLA builds on COLA methods, which have been adopted by the USDA Forest Service, 
Region 6, as their standard for landscape analysis in support of National Forest Plan revision. 
Several research objectives of the new mapping program derived from lessons learned during the 
GNNFire project. The PNLA effort represents the first time in history that the Forest Service, 
BLM, and ODF have collaborated on a single, statewide effort to consistently map and model the 
dynamics of vegetation and land cover. 
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Also in fall 2005, LEMMA will begin a study to model and map Ecological Systems of eastern 
Oregon and Washington as part of the national Gap Analysis Program. The project will develop 
detailed maps of forest composition and structure using GNN, and integrate them with maps of 
nonforest habitats developed by OSU Institute of Natural Resources and Oregon Natural 
Heritage Program. 
 
In an innovative approach to technology transfer of our GNN maps, we are beginning a JFSP-
funded study to integrate computer gaming and GIS technology. These tools will allow 
researchers, map developers, and map users to better visualize the regional maps, and interact 
with each other real-time within a virtual map environment.  
 
Funding for these and other related projects is from a variety of sources, as listed here: 
 
2004. Extension of the GNNFire study area to encompass all lands administered by the 

Wenatchee NF; eastern Washington National Forest Plan revision team; $10,000. 
 

2004. Mapping forest vegetation using Gradient Nearest Neighbor imputation for the Central 
Oregon Landscape Analysis (COLA) pilot study, as part of a larger effort to develop data and 
analysis methods in support of the Oregon Forest Assessment; Oregon Department of 
Forestry and PNW Focused Science Delivery Program; $15,400. 

 
2005. How does spatial resolution affect Gradient Nearest Neighbor vegetation maps and models 

of wildlife habitat capability? Competitive grant for Ecosystem Processes Program, PNW 
Station; $25,000. 

 
2005. Proposal to map Ecological Systems of mapping zones 8&9 with GNN imputation and 

regional inventory plots. With Oregon State University and Oregon Natural Heritage 
Program. Funded by national Gap Analysis Program, US Geological Survey; $93,000. 

 
2005. A program to map forest vegetation and land cover in the Pacific Coast States (Oregon, 

California, and Washington) on a five-year cycle with GNN imputation and FIA plots. PNW 
FIA Program and Western Wildlands Environmental Threats Assessment Center 
(WWETAC). Estimated total cost is  $2.2 million over the first five years. 

 
2005. Innovative, 3-D, interactive, and immersive techniques for visualizing, querying, and 

understanding regional maps of forest vegetation, fuels, and fire risk. Joint Fire Science 
Program; $254,489. 

 
2005. Pacific Northwest Landscape Analysis (PNLA), in support of the Oregon Department of 

Forestry’s statewide Oregon Assessment, and as the official analytical process to be used by 
Region 6 in National Forest Plan Revision. The interagency PNLA is budgeted for > $3.3 
million over four years, divided among Region 6, PNW, BLM, and ODF. The map of forest 
vegetation for this project will be developed using GNN.  
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2005. Region 6, USDA Forest Service, has incorporated GNN as part of its strategy for 

Providing Existing Vegetation Maps (see link to Existing Vegetation Mapping Strategy at 
http://www.reo.gov/ecoshare).  
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Appendix 1 – Documentation of Gradient Nearest Neighbor (GNN) models distributed as JFSP 
final products. 
 
 
This appendix describes the four kinds of models (Table 1) distributed as JFSP final products, 
and summarizes the plot data (Table 2) and satellite imagery (Table 3) used in model 
development. 
 
 
Four kinds of GNN models 
 
The use of multivariate statistics and imputation by GNN results in unique spatial modeling 
properties. As with most predictive models, alternative model forms can be specified to optimize 
for different objectives and outcomes. Rather than provide one GNN model and map for each 
study area, we’ve developed four GNN models that illustrate major variations in model form as a 
function of spatial pattern and emphasis on species composition vs. forest structure. We expect 
each kind of model to have advantages for certain applications, and we seek feedback from map 
users on the alternative model forms as they exercise the maps (e.g., via feedback received on the 
web site and from follow-up surveys of users who download or request GNN data). The four 
kinds of models are summarized in Table 1 and described below.  
 
Table 1.– Summary of four kinds of GNN models, as determined by spatial filtering of Landsat-
derived explanatory variables and specification of response variables that emphasize species 
composition vs. forest structure. 
 

Spatial filtering of  
Landsat-derived explanatory 

variables 

Response variables 
Species   <=====>   Structure 

Median-filtered Species-size model, 
median-filtered 

Structure model,  
median-filtered 

Unfiltered 

Species model  
(no imagery  
in model) -- Structure model,  

unfiltered 
 
The appearance (spatial patterning) of the final GNN maps are strongly influenced by tuning the 
spatial resolution of the independent variables – particularly those derived from Landsat TM 
imagery. Median-filtering of the raw Landsat imagery has the effect of reducing the fine-scale 
heterogeneity, or salt-and-peppering, in the final map, while maintaining boundaries between 
contrasting vegetation conditions (e.g., of clearcuts or stand-replacing fires). The median 
filtering consists of moving a nine-pixel window across the image, and assigning the median 
value of nine pixels to the center pixel. Grids for individual bands, ratios, and transformations 
are filtered independently. In general, overall accuracy in resulting GNN predictions appears to 
be little affected by the filtering, so decisions on which model to use are largely subjective based 
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on appearance – at least until more experience is gained on the sensitivity of map applications to 
different spatial grains.  
Species model: Response variables used in model development are basal area by tree species. 
Landsat TM, disturbance, and ownership variables are not included as explanatory variables. 
This model provides the most accurate spatial predictions of distributions of individual species 
and of community types that are defined based on species composition. Stand structure variables 
are not attached to this grid. 
 
Species-size model: Response variables used in model development are basal area by species 
and size-class (but not all size-classes were recognized for all species). Explanatory variables 
derived from Landsat TM imagery are median-filtered, which reduces fine-scale heterogeneity or 
‘salt-and-peppering’ in the GNN map. This model is a ‘hybrid’ between the species and structure 
models, and may be a good compromise model for applications where elements of both species 
composition and stand structure are needed, and covariance among these elements must be 
maintained (e.g., if tree lists are to be input into simulation models such as the Forest Vegetation 
Simulator). Accuracy for species variables in this model was intermediate between the species 
and structure models. Accuracy for structure variables was comparable or slightly worse than the 
structure model. 
 
Structure model, median-filtered: Response variables are basal area by species group (conifer or 
hardwood) and size-class, total canopy cover, snag density by size class, and total down wood 
volume. This model provides slightly better overall accuracy of structure and fuels variables 
compared to the species-size model, but less accurate depiction of species distributions 
compared to the species and species-size models. We are distributing structure models developed 
at both coarse (median-filtered) and fine (unfiltered imagery) resolutions. Maps developed from  
median-filtered imagery contain less fine-scale variability than the unfiltered versions. 
 
Structure model, unfiltered: Same as above but developed from unfiltered satellite imagery, 
which results in a map with much more fine-scale heterogeneity or ‘salt-and-pepper’ effect.  
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Plot data used in GNN models 
 
Table 2.– Summary of plot data used in GNN models. 

Number of plots 
Study area Data 

source 
Ownerships 

sampled 
Years 

measured Species 
model 

Species-size and 
structure models 

FIACA Nonfederal 1993-1994 306 200 

R5 National Forest 1995-2000 1,407 1,288 

YOSE Yosemite 
National Park 1988-1989 236 347 

California 

All plots   1,949 1,835 

FIAWO Nonfederal 1995-1997 572 385 

BLMWO BLM 1997 115 99 

R6 (CVS) National Forest 1993-1996 316 279 
Oregon 

All plots   1,003 763 

FIAEW Nonfederal 1991 475 468 

R6 (CVS) National Forest 1993-1997 1,856 1,808 

NCNP North Cascades 
National Park 2000 43 49 

Washington 

All plots   2,374 2,325 
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Satellite imagery used in the GNN models 
 
Table 3.– Satellite imagery used in GNN models. 
 

Study area Model Landsat imagery used 

ca_spp no imagery 

ca_sppsz_fil 2000 Landsat ETM+, median-filtered, tasseled cap 
transformations 

ca_struct_fil 1992 Landsat TM and 2000 Landsat ETM+, median-filtered, 
raw bands 

California 

ca_struct_unf 1992 Landsat TM and 2000 Landsat ETM+, unfiltered, raw 
bands 

wa_spp no imagery 

wa_sppsz_fil 2000 Landsat ETM+, median-filtered, raw bands 

wa_struct_fil 1992 Landsat TM and 2000 Landsat ETM+, median-filtered, 
raw bands 

Washington 
 
 
 
 
 

wa_struct_unf 1992 Landsat TM and 2000 Landsat ETM+, unfiltered, raw 
bands 

or_spp no imagery 

or_sppsz_fil 1996 Landsat TM, median-filtered, tasseled cap 

or_struct_fil 1996 Landsat TM, median-filtered, raw bands 

Oregon 

or_struct_unf 1996 Landsat TM, unfiltered, raw bands 
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1 Canopy Fuels 
Canopy bulk density characterizes the mass of canopy fuels per unit volume and is a key input to 
indices of crown fire risk (Scott and Reinhardt 2001) and spatial models of fire behavior (Finney 
1998). Forest inventories do not include direct measurements of canopy fuels. Instead the 
weights of various canopy fuel components (foliage, live branches, and dead branches) are 
modeled at the tree level, usually as a function of DBH. Canopy volume per unit area and height 
to the base of the live canopy can also be estimated based on tree height and crown ratio 
measurements. This section outlines the procedures used in the GNN-Fire project to model 
canopy fuels and canopy structure based on forest inventory plot data. 

1.1 Tree-Level Calculations 
Published equations were used to predict the total live and dead crown weights of individual 
trees as a function of their DBH. Crown fraction equations were also used to subdivide the live 
crown weight into a foliage component and several branch-size components (Table 1.1). These 
crown fraction variables were used in subsequent steps to compute available canopy fuels, which 
included the mass of live conifer foliage plus one-half the mass of live and dead conifer branches 
in the 0-0.25 inch size class (Reinhardt and Crookston 2003). 

Table 1.1: Individual-tree variables included in the Livetree database table. 
Variable Name* Description 
LCMASS Total mass of live foliage and branches (kg) 
DCMASS Total mass of dead branches (kg) 
LCFRAC1 Proportion of live crown mass comprised of foliage 
LCFRAC2 Proportion of live crown mass comprised of foliage plus branches < 0.25 inches 
DCFRAC1 Proportion of dead crown mass comprised of branches < 0.25 inches 
* In the GNN-Fire databases, variables names preceded with an “R” (e.g. “RLCMASS”) indicate 
variables that were computed based on the Brown (1978) crown weight equations. See the sections 
describing individual study areas for more details. 
 
Height to crown base was computed for each tree as a function of crown ratio and tree height. 
One problem with this method is that field crews estimate a “compacted” crown ratio, in which 
the height to the lowest live branch is shifted upward to compensate for asymmetrical crowns. 
This estimate results in biased estimate of height to crown base. Therefore, an “uncompacted” 
crown ratio was also computed for each tree using equations developed by Monleon et al. 
(2004). 

1.2 Plot-Level Calculations 

1.2.1 Canopy Bulk Density 
Two methods were used to compute canopy bulk density (Table 1.2). The first method, similar to 
that used by Cruz et al. (2003) and Keane et al. (1998), computed canopy bulk density as 

CBD1 = CANFWT/CL 
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where CANFWT was the total weight of available canopy fuels weight expressed as kg/m2 and 
CL was the average canopy depth in m computed as STNDHGT - HCB. The units of CBD1 were 
kg/m3 (mass per unit volume).  

Table 1.2: Plot/condition class/forest class canopy fuels and canopy structure variables. 
Variable Name* Description 
CBD1 Canopy bulk density computed with plot average method and “compacted” crowns 

(kg/m3) 
CBD2 Canopy bulk density computed with vertical layering method and “compacted” 

crowns (kg/m3) 
CBDU1 Canopy bulk density computed with plot average method and “uncompacted” crowns 

(kg/m3) 
CBDU2 Canopy bulk density computed with plot vertical layering method and 

“uncompacted” crowns (kg/m3) 
HCB Weighted mean height to crown base of all trees in the plot (m) 
HTCB2 Height to canopy base computed with vertical layering method and “compacted” 

crowns (m) 
HTCBU2 Height to canopy base computed with vertical layering method and “uncompacted” 

(m) crowns 
CANMASS Total crown weight of all conifers (kg/ha)  
CANFWT Total weight of all available canopy fuels (kg/ha) 
* Variables names preceded with an “R” (e.g. “RLCMASS”) indicate variables that were computed based 
on the Brown (1978) crown weight equations. See the sections describing individual study areas for more 
details. 
 
The second method of computing canopy bulk density involved vertically partitioning the 
canopy into a series of 0.3 m thick layers. (Sando and Wick 1972, Kilgore and Sando 1975, Scott 
and Reinhardt 2001). The proportion of each tree’s crown mass that fell within each vertical 
layers was computed by assuming a uniform distribution of crown mass between the crown base 
and the top of each tree. Canopy bulk density was then computed for each layer as 

CBDl = CFWl/CLl 
 
where CBDl was the total canopy fuel weight in layer l and CLl was the depth of layer l. The 
vertical canopy bulk density profile was then smoothed using a 4.5 m running mean, and CBD2 
was computed as the maximum value of this running mean.  

Two versions of each of each canopy bulk density variable were generated (Table 1.2). The first 
version was based on the original “compacted” crown ratio estimates, whereas the second 
version was based on the “uncompacted” crown ratio estimates. 

1.2.2 Height to Base of Live Canopy 
Two methods were used to compute height to the base of the live canopy for each inventory plot 
(Table 1.2). The first method used a weighted mean of height to crown base for all trees on the 
plot, with each tree weighted by its expansion factor (Cruz et al. 2003). The second method 
involved vertically partitioning the forest canopy into 0.3-m thick layers and computing canopy 
bulk density for each layer as described in the previous section. The vertical canopy bulk density 
profile was then smoothed using a 1 m running mean and height to base of live canopy was 
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defined as the lowest height at which at least 0.011 kg/m3 of available canopy fuels was present 
(Scott and Reinhardt 2001). Two versions of the layered canopy base height variable were 
computed: the first based on the original “compacted” crown ratio estimates, and the second 
based on the “uncompacted” crown ratio estimates (Table 1.2). 

1.2.3 Other Canopy Variables 
Two additional canopy fuels variables were computed for each inventory plot (Table 1.2). 
CANMASS was computed as the total weight of all conifer trees crowns on the plot, including 
foliage and all live and dead branches. CANFWT was computed as the total weight of available 
fuels, which included the mass of live conifer foliage plus one-half the mass of live and dead 
conifer branches in the 0-0.25 inch size class 

1.3 Details for Individual Study Areas 

1.3.1 Oregon Coast  
Two sets of canopy fuels and canopy structure variables were computed for the Oregon Coast 
study area. The first set of variables was based on crown weight and crown fraction equations 
developed specifically for the coastal Pacific Northwest. Live crown weight estimates for coastal 
Douglas-fir and western hemlock were based on the equations of Snell and Anholt (1981). Live 
crown weights for other coastal conifer species were computed using the approach of Snell and 
Brown (1980). In this approach, equations developed for the northern Rocky Mountains by 
Brown (1978) were used to predict live crown weight for trees smaller than 40 inches DBH. Live 
crown weight was predicted as a ratio of the crown weight of coastal Douglas-fir for trees larger 
than 40 inches (Snell and Brown 1980). 

Dead crown weights for coastal lodgepole pine, western white pine, western redcedar, western 
hemlock, and grand fir were computed using the equations of Snell and Brown (1980). Dead 
crown weights for other conifer species were computed using the equations provided by Brown 
(1978).Live crown fractions for coastal Douglas-fir were computed using equations from Snell 
and Anholt (1981). Live crown fractions for other conifer species were computed using 
equations from Brown (1978). Dead crown fractions for all conifer species were computed using 
equations from Brown (1978). 

Brown (1978) developed separate equations to predict live crown weight for dominant/ 
codominant trees, intermediate/ suppressed trees, and trees < 2 inches dbh. When using the 
Brown (1978) equations to predict crown weights of conifers smaller than 40 inches DBH in 
coastal forests, the dominant/codominant equations equations were used for all trees. This 
decision was made for consistency with Snell and Anholt (1981), who did not break down their 
equations for coastal Douglas-fir and western hemlock by tree size or crown class. It is not clear 
whether the distinctions between dominant/ codominant and intermediate/ suppressed crown 
morphology would be the same in coastal forests as in inland forests. Furthermore, Brown (1978) 
only included intermediate/suppressed tree equations for ponderosa pine, Douglas-fir, grand fir, 
and western red cedar.  

A second set of canopy fuels and canopy structure variables was computed based entirely on the 
northern Rocky Mountain equations developed by Brown (1978). In the GNN-Fire database, this 
second set of variables is distinguished by an “R” preceding each variable (e.g. “CBD1” was 
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computed using the coastal Pacific Northwest equations, whereas “RCBD1” was computed using 
the northern Rocky Mountain equations). This second set of variables was computed primarily to 
assess how sensitive the derived canopy variables were to crown weight equations from different 
geographic regions. 

Crown weight equations were not available for all tree species in the Coast Range. Species for 
which no equations were available were assigned a surrogate species to link them with the 
available equations. Most of the species that required surrogates were relatively uncommon. A 
major exception was Sitka spruce, for which Douglas-fir was used as a surrogate species. 

1.3.2 Eastern Washington 
Canopy fuels and canopy structure variables for the Eastern Washington study area were based 
entirely upon the crown weight and crown fraction equations developed by Brown (1978) for the 
northern Rocky Mountains. The geographic distribution of the samples used to develop these 
equations (the Rocky Mountains of Northern Idaho and Northwestern Montana) was adjacent to 
our eastern Washington study area, and had environmental conditions that were similar to the 
interior Pacific Northwest. Equations were available for all of the major tree species within the 
study area. Species for which no equations were available were assigned a surrogate species to 
link them with the available equations. For consistency with the Oregon Coast Range study area, 
the names of all crown weight and canopy fuels variables in the Eastern Washington database 
were prefaced by an “R” (e.g. “RCBD1”) to indicate that they were computed using the Brown 
(1978) equations. 

1.3.3 Sierra Nevada 
Canopy fuels and canopy structure variables for the Sierra Nevada study area were based entirely 
upon the crown weight and crown fraction equations developed by Brown (1978) for the 
northern Rocky Mountains. Despite the many physical and ecological differences between the 
Sierra Nevada and the northern Rocky Mountains, we decided to use the Brown (1978) equations 
for several reasons. First, they encompassed most of the major tree species within the Sierra 
Nevada study area. Furthermore, there was no comparable set of published crown weight 
equations available for the Sierra Nevada. Although there were other published allometric 
equations for some species developed specifically for Sierra Nevada (e.g. Westman (1987)), 
these studies did not include the crown fractions estimates that are required to estimate the 
proportion of total crown weight that is available canopy fuel. Therefore, we decided it would be 
better to use a consistent set of crown weight and crown fraction equations than to combine 
multiple equations from a variety of different sources. Species for which no equations were 
available were assigned a surrogate species to link them with the available equations. As with the 
Eastern Washington database, the names of all crown weight and canopy fuels variables in the 
Sierra Nevada database were prefaced by an “R” (e.g. “RCBD1”) to indicate that they were 
computed using the Brown (1978) equations. 

2 Crown Ratio Models 
Crown ratio and height to crown base measurements were not available for the National Park 
Service inventory plots from Yosemite and King’s Canyon National Parks. Previous studies have 
found that these attributes can be modeled based on tree size, stand competition, and site 
characteristics (Hasenauer and Monserud 1996, Temesgen et al. 2005). Using data from Region 
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5 and FIA plots that did have crown ratio measurements, we developed regression equations to 
predict crown ratio and height to crown base for trees on the Park Service plots. 

2.1 Methods 
Data from the Region 5 and FIA inventories were randomly split into two subsets for fitting and 
validating crown ratio models. Models were developed for the following species: Abies concolor 
(ABCO), Abies magnifica (ABMA), Calocedrus decurrens (CADE), Pinus albicaulis (PIAL), 
Pinus contorta (PICO), Pinus jeffreyi (PIJE), Pinus lambertiana (PILA), Pinus ponderosa 
(PIPO), Psuedotsuga  mensizeii (PSME), and Tsuga mertensiana (TSME).  Crown ratios were 
transformed to constrain model outputs between 0 and 1 where TRANS.CR= ln[1/(cr-1)].  Linear 
models were developed for each species to predict transformed crown ratio using several 
variables.  Diameter at breast height (DBH) was used as a measure of tree size.  Variables 
characterizing stand competition included density in trees per hectare (TPH), basal area of all 
trees per hectare (BAA), tree diameter diversity index (DDI), and basal area of trees larger than 
the subject tree (BAL).  Percent slope (SLP), elevation (DEM), and aspect (ASP) were included 
a site variables.  All variables with skewed distributions were transformed with a square root 
transformation.  Linear models were initially fit with all variables.  All non-significant variables 
(p<0.01) were eliminated using backward stepwise regression.  Highly correlated variables were 
also eliminated from the models to prevent multicolinearity.   

Once all significant variables for predicting the transformed crown ratio were determined we 
used non-linear regression to refit the logistic model for crown ratio.  All variables identified as 
significant from the linear models were included and coefficients from the linear models were 
used as starting values for the nonlinear models.  Nonlinear models for each species were then fit 
to the validation data set.  Accuracy of the non-linear models was assessed by applying them to 
the validation datasets, and then using linear regression to compare observed versus predicted 
values by species. Both crown ratio and height to canopy base were examined in the validation 
exercise 

2.2 Results 
Linear models differed considerably in the number of significant variables, the variables that 
were significant, and the fit of the model (Table 1).  Final models for the nonlinear models can 
be seen in Table 2.  Coefficients for the final nonlinear models are in Table 3.  Estimates of 
height to crown base ranged from r2=0.83 to r2=0.48 and were much better than estimates of 
crown ratio which ranged from r2=0.31 to r2=0.0016 (Table 4).  

Table 2.1: Coefficients and r2 values of linear crown ratio models.  
Species Intrcpt. DBH SLP ASP TPH BAA BAL DDI DEM r2 
ABCO 0.0047 -0.043 ns ns ns 0.1568 0.004 ns -0.0005 0.2 
ABMA 0.6011 0.071 -0.0072 -0.0802 0.0098 ns 0.1853 ns -0.0009 0.21 
CADE -1.0901 0.0053 ns 0.1151 0.0161 ns 0.1603 ns -0.0002 0.138 
PIAL 2.1755 -0.2494 ns -0.628 ns ns -0.1695 ns ns 0.423 
PICO 0.0309 ns ns ns ns 0.0638 0.0636 ns -0.0004 0.076 
PIJE -0.7506 ns 0.0116 -0.0278 0.0278 ns ns 0.1696 -0.0005 0.3 
PILA -0.682 ns 0.0051 ns ns 0.1928 ns ns -0.0005 0.212 
PIPO -0.3692 -0.0724 0.0034 ns -0.005 ns 0.1189 ns -0.0006 0.383 
PSME -0.7776 -0.0872 0.003 ns ns 0.2061 ns ns ns 0.158 
TSME 2.085 ns ns ns ns ns ns ns -0.001 0.051 
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Table 2.2: Crown ratio model formulas. 
Species Formula 
ABCO CR = 1/(1 + exp(b0 + b1 * sqrt(DBH) + b2 * sqrt(BAA) + b3 * DEM + b4 * BAL)) 

ABMA 
CR = 1/(1 + exp(b0 + b1 * DBH + b2 * sqrt(TPH) + b3 * ASP + b4 * SLP + b5 * DEM + b6 * 
sqrt(BAL))) 

CADE CR = 1/(1 + exp(b0 + b1 * DBH + b2 * sqrt(TPH) + b3 * ASP + b4 * DEM + b5 * sqrt(BAL)))  
PIAL CR = 1/(1 + exp(b0 + b1 * sqrt(DBH) + b2 * ASP + b3 * sqrt(BAL))) 
PICO CR = 1/(1 + exp(b0 + b1 * sqrt(BAA) + b2 * DEM + b3 * sqrt(BAL))) 
PIJE CR = 1/(1 + exp(b0 + b1 * sqrt(TPH) + b2 * ASP + b3 * SLP + b4 * DEM + b5 * DDI)) 
PILA CR = 1/(1 + exp(b0 + b1 * sqrt(BAA) + b2 * SLP + b3 * DEM)) 
PIPO CR = 1/(1 + exp(b0 + b1 * sqrt(DBH) + b2 * sqrt(TPH) + b3 * SLP + b4 * DEM + b5 * sqrt(BAL))) 
PSME CR = 1/(1 + exp(b0 + b1 * sqrt(DBH) + b2 * sqrt(BAA) + b3 * SLP)) 
TSME CR = 1/(1 + exp(b0 + b1 * DEM))  
 
Table 2.3: Coefficients of nonlinear crown ratio models 
Species Intrcpt. DBH SLP ASP TPH BAA BAL DDI DEM 
ABCO -0.01191 -0.03360 ns ns ns 0.13516 0.00417 ns -0.00044 
ABMA 0.61781 0.00602 -0.00717 -0.06765 0.00802 ns 0.16097 ns -0.00078 
CADE -0.97163 0.00470 ns 0.10257 0.01443 ns 0.13515 ns -0.00017 
PIAL 2.05578 -0.23473 ns -0.55285 ns ns -0.16350 ns ns 
PICO 0.06948 ns ns ns ns 0.05340 0.06128 ns -0.00036 
PIJE -0.68546 ns 0.01095 -0.18274 0.02717 ns ns 0.15183 0.00043 
PILA -0.61664 ns 0.00413 ns ns 0.17303 ns ns -0.00040 
PIPO -0.66867 0.05500 0.00096 ns 0.00798 ns 0.23817 ns -0.00052 
PSME -0.68382 -0.07782 0.00251 ns ns 0.18387 ns ns ns 
TSME 1.73104 ns ns ns ns ns ns ns -0.00085 
 
Table 2.4: Crown ratio and height to crown base r2 for validation of model estimates. 
Species Crown Ratio r2 Height to Crown Base r2 
ABCO 0.1805 0.7607 
ABMA 0.1569 0.7973 
CADE 0.1046 0.7785 
PICO 0.1589 0.7097 
PIJE 0.2989 0.7714 
PILA 0.1468 0.8299 
PIPO 0.309 0.8272 
TSME 0.0047 0.5152 
PSME 0.2856 0.7871 
PIAL 0.0016 0.4782 

3 Fuel Model Crosswalks 

3.1 Oregon Coast Range 
The rules used to establish the relationships between forest structure and fuel models in the 
Oregon Coast Range were derived from the FVS-FFE documentation (Reinhardt and Crookston 
2003; Reinhardt and Crookston 2004) (Reinhardt and Crookston 2003, 2004), but were modified 
to reflect the fuels and forest structure variables that are available in the GNN-Fire database. 
Unless otherwise specified, variable names are identical to those used in the GNN-Fire Coast 
Range database. 
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The general procedure for the fuel model crosswalk is as follows. Individual steps are described 
in more detail in subsequent sections. 

Step 1: Categorize each plot as either a “high fuel” plot or a “low fuel” plot based on the 
loadings of small down fuels (< 3”) and large down fuels (> 3”). 

Step 2: If the plot is categorized as having high fuels, assign one of the “high fuel models” 
(either 10 or 12) based on the loadings of small and large down fuels. Otherwise, go to step 3. 

Step 3: If the plot is categorized as having low fuels, choose a set of classification rules based on 
the species group that comprise the majority of stand basal area. 

Step 4: Using the classification rules chosen in step 3, assign one of the “low fuel models” 
(usually 5, 8, or 9) based on canopy cover and quadratic mean diameter. 

3.1.1 Step 1 – High Versus Low Fuel Classification 
Plots were assigned to the high fuel model category if either the fine fuels loadings (< 3 inches) 
or the large fuels loadings (> 3 inches) were above threshold levels specified in the FVS-FFE 
documentation (Reinhardt and Crookston 2003, page 39). The fine fuel loading threshold for 
assigning a high fuel model was 6 tons/acre (13,450 kg/ha), and the large fuel loading threshold 
for assigning a high fuel model was 15 tons/acre (33,625 kg/ha).  

Estimates of large fuels loadings were available for all plots in the GNN-Fire database. A new 
LGFUEL variable (total loading of all down fuels > 3 inches) was created by summing the 
DDF_1000 and the DDF_1000P variables.  

Fine fuels loadings were only available for plots from the CVS and BLM inventories. Even for 
these plots, fine fuels measurements did not include the smallest (< 0.25 inch) size class. A 
logistic regression model was developed to classify plots as falling either above or below the fine 
fuels threshold. Plots from the CVS and BLM inventories were classified as being above the 
threshold if their total fine fuel loadings were greater than 4.2 tons/acre (9,415 kg/ha). These 
cutoff values were selected based on the assumption that the 0.25 – 3 inch fuels recorded in these 
databases accounted for 70% of the total loading of fuels < 3 inches. This assumption was 
derived from the relative amounts of these sizes classes in fuel model 10. The following logistic 
regression equation used to predict whether fine fuels were above this threshold based on stand 
structure variables. 

logit (p) = 0.7341693 – 4.29528 * SDBA + 0.05879063 * sqrt(TPHTOL_GE_3) – 0.1014303 * 
sqrt(TPH_GE_3) – 1.15949 * sqrt(BAH_PROP) + 0.0002815691 * CANCOV2 

The probability that a stand was above the fine fuels threshold was then computed as 

p = 1/(1 + exp(- logit(p))) 

A new variable, SMFUEL, was created to indicate whether each plot was above or below the 
fine fuels threshold as predicted by the logistic regression equation. Plots were considered to be 
above the fine fuels threshold (SMFUEL = 1) if p > 0.42 and below the fine fuels threshold 
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(SMFUEL = 0) otherwise. This cutoff value correctly classified 67% of the plots while 
maintaining the same proportion of high and low fuels plots as in the original data. 

The logistic regression equation was used to compute SMFUEL for all of the stands in the GNN-
Fire database. The following rule was then used to classify plots into the “high fuels” and “low 
fuels” categories. 

If SMFUEL = 1 or LGFUEL > 33,625 
 Select a “high fuel” model (go to step 2) 
Otherwise 
 Select a “low fuel” model (go to step 3) 

3.1.2 Step 2 – High Fuel Model Assignment 
Fuel models were selected for plots in the “high fuels” category using the variables computed in 
Step 1 (SMFUEL and LGFUEL). The following rules were adapted from the FVS-FFE 
documentation (Reinhardt and Crookston 2003, page 39). 

If SMFUEL = 1 and LGFUEL > 44,833 
 Assign fuel model 12 
Otherwise 
 Assign fuel model 10 

3.1.3 Step 3 – Low Fuel Model Species Grouping 
Plot basal area was summed by species, and then species basal areas were summed to compute 
basal area within each of several species groups. Plots in the “low fuels” category were assigned 
to a species group based on total basal area within each species group (Reinhardt and Crookston 
2004, page 81). 

BAPISIGRP = BAPISI + BATSHE + BATHPL 
BAPSMEGRP = BAPSME + BAABGRC 
BAALRUGRP = BAALRU + BAACMA3 
BAPICOGRP = BAPICO 
BALIDEGRP = BAQUGA4 + BALIDE3 
 
The species group with the highest basal area was assigned to the plot. For plots with no trees 
present, the default species group was assumed to be PSME. 

3.1.4 Step 4 – Low Fuel Model Assignment 
The following sets of decision results was used to select fuel models depending on the species 
group assigned in step 3 (Reinhardt and Crookston 2004, page 83). 
 
For plots belonging to the Sitka spruce group or the Douglas-fir group 
If QMDA_GE3 > 10.16 cm 
 If CANCOV > 80 
  Assign fuel model 8 
 Otherwise 
  Assign fuel model 5 
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Otherwise 
 Assign fuel model 5 
 
For plots belonging to the red alder group 
 If CANCOV > 50 
  Assign fuel model 9 
 Otherwise 
  Assign fuel model 5 
 
For plots belonging to the lodgepole pine group 
 If CANCOV > 50 
  Assign fuel model 8 
 Otherwise 
  Assign fuel model 5 
 
For plots belonging to the tanoak group 
 If CANCOV > 50 
  Assign fuel model 5 
 Otherwise 
  Assign fuel model 2 
 

3.2 Eastern Washington 
The rules used to establish the relationships between forest structure and fuel models in the 
Oregon Coast Range were derived from the FVS-FFE documentation (Reinhardt and Crookston 
2003), but were modified to reflect the fuels and forest structure variables that were available in 
the GNN-Fire database. Unless otherwise specified, variable names are identical to those used in 
the GNN-Fire Eastern Washington database. 

The general procedure for the fuel model crosswalk is as follows. Individual steps are described 
in more detail in subsequent sections. 

Step 1: Categorize each plot as either a “high fuel” plot or a “low fuel” plot based on the 
loadings of small down fuels (< 3”) and large down fuels (> 3”). 

Step 2: If the plot is categorized as having high fuels, assign one of the “high fuel models” 
(either 10 or 12) based on the loadings of small and large down fuels. Otherwise, go to step 3. 

Step 3: If the plot is categorized as having low fuels, determine whether the plot falls within the 
Northern Idaho or the East Cascades variant as described in the FVS-FFE documentation.  Then 
choose a set of classification rules based on the species group that comprise the majority of stand 
basal area. 

Step 4: Using the classification rules chosen in step 3, assign one of the “low fuel models” based 
on canopy cover, quadratic mean diameter, and whether the canopy is composed of a single 
stratum or is multistoried. 
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3.2.1 Step 1 – High Versus Low Fuel Model Classification 
Plots were assigned to the high fuel model category if either the fine fuels loadings (< 3”) or the 
large fuels loadings (> 3”) were above threshold levels specified in the FVS-FFE documentation 
(Reinhardt and Crookston 2003, page 39). The fine fuel loading threshold for assigning a high 
fuel model was 6 tons/acre (13,450 kg/ha), and the large fuel loading threshold for assigning a 
high fuel model was 15 tons/acre (33,625 kg/ha).  

Estimates of small and large fuels loadings were available for all plots in the GNN-Fire database. 
A new LGFUEL variable (total loading of all down fuels > 3”) was created by summing the 
DMPH_3_9P, DMPH_9_20C and DMPH_GT_20C variables after converting each to tons/acre 
by dividing by 2241.702308.  A small fuel variable (DMPH_0_3) was created by converting 
DVPH_0_3P (volume) to mass using a wood density of 0.44 g/cm3. 

3.2.2 Step 2 – High Fuel Model Assignment 
Fuel models were selected for plots in the “high fuels” category using the variables computed in 
Step 1 (SMFUEL and LGFUEL). The following rules were adapted from the FVS-FFE 
documentation (Reinhardt and Crookston 2003, page 39): 

If SMFUEL > 6 and LGFUEL > 20 
 Assign fuel model 12 
Otherwise 
 Assign fuel model 10 

3.2.3 Step 3 – Low Fuel Model Species Grouping 
Plots in the “low fuels” category were determined, by geographic location, to be either in the 
Northern Idaho (p. 95) or the East Cascades variant (p.159) as described in the FVS-FFE 
documentation.  Second, plots were assigned to a species group based on total basal area within 
each species group using the following procedure: 

1) Basal area by size class (in the SPECIESUDB table in the database) was totaled for each 
species.  For example: 

PSME1 + PSME2 + PSME3 + PSME4 = PSME 

2) Species were then grouped so that plots fell within species groups described in Reinhardt and 
Crookston (2003). 

PSMEGRP = PSME + THPL 
PIPOGRP = PIPO 
PICOGRP = PICO + PIMO3 + PIEN2 + PIAL + LALY 
ABLAGRP = ABLA 
TSMEGRP = TSME + TSHE + ABAM + ABGR 
LAOCGRP = LAOC 
MOISTGRP = BEPAC + POTR5 + POBAT 
 
The species group with the highest basal area was assigned to the plot. For plots with no trees 
present, the default species group was assumed to be PSME. 
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3.2.4 Step 4 – Low Fuel Model Assignment 
The following sets of decision were are used to select fuel models depending on the species 
group assigned in step 3: 

For the Northern Idaho variant (Reinhardt and Crookston, page 103): 

If the plot was dominated be either PSMEGRP or PIPOGRP, then 

 If CANCOV < 30% 
  Assign fuel model 1 
 If 30% CANCOV < 50%  
  Assign fuel model 8 
 If CANCOV > 50% 
  Assign fuel model 9 
If the plot was dominated by a species group other than PSMEGRP or PIPOGRP, then 
 Assign fuel model 8 
 
For the East Cascades variant (Reinhardt and Crookston, page 169): 

**In order to use the rules for this variant, it had to be determined whether the canopy was single 
storied or multistoried.  The following equation was developed: 

Stratum = (STNDHGT – HCB) / (STNDHGT) 

If stratum < 0.5 or if STNDHGT = 0, the canopy was ruled single storied.  Otherwise, the canopy 
was ruled multistoried. 

If the plot is dominated by the Douglas-fir group (PSMEGRP) or if all species groups have a 
value of 0, then 

If CANCOV < 20%, then 
 If the canopy is single storied, then 
  Assign fuel model 1 
 Otherwise 
  Assign fuel model 5 
If 20% < CANCOV < 50%, then 
 If the canopy is single storied, then 
  Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
If 50% <CANCOV < 80%, then 
 If the quadratic mean diameter (QMDA_DOM1) < 3”, then 
  Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
If CANCOV > 80%, then 
 Assign fuel model 8 
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If the plot is dominated by the Ponderosa pine group (PIPOGRP), then 
 
If CANCOV < 20%, then 
 If the canopy is single storied, then 
  Assign fuel model 2 
 Otherwise 
  Assign fuel model 6 
If 20% < CANCOV < 50%, then 
 If the canopy is single storied, then 
  Assign fuel model 6 
 Otherwise 
  Assign fuel model 9 
If 50% < CANCOV < 80%, then 
 If QMDA_DOM1 < 3”, then 
  Assign fuel model 6 
 Otherwise 
  Assign fuel model 9 
If CANCOV > 80%, then 
 Assign fuel model 9 
 
If the plot is dominated by the lodgepole pine group (PICOGRP), then 
 
If CANCOV < 20%, then 
 If the canopy is single storied, then 
  Assign fuel model 1 
 Otherwise 
  Assign fuel model 5 
If 20% < CANCOV < 50, then 
 If the QMDA_DOM1 < 3”, then 
  Assign fuel model 1 
 Otherwise 
  If the canopy is single storied, then 
   Assign fuel model 8 
  Otherwise 
   Assign fuel model 5 
If 50% < CANCOV < 80%, then 
 If the QMDA_DOM1 < 3”, then 
  Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
If CANCOV > 80%, then 
 If the canopy is single storied, then 
  If QMDA_DOM1 < 3”, then 
   Assign fuel model 5 
  Otherwise 
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   Assign fuel model 8 
 Otherwise 
  Assign fuel model 8 
 
If the plot is dominated by the subalpine fir group (ABLAGRP), then 
 
If CANCOV < 20%, then 
 If the canopy is single storied, then 
  Assign fuel model 1 
 Otherwise 
  Assign fuel model 5 
If 20% < CANCOV < 50%, then 
 If the canopy is single storied, then 
  If the QMDA_DOM1 < 3”, then 
   Assign fuel model 5 
  Otherwise 
   Assign fuel model 8 
 Otherwise 
  Assign fuel model 8 
If 50% < CANCOV < 80%, then 
 If the QMDA_DOM1 < 3”, then 
  Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
If CANCOV > 80%, then 
 Assign fuel model 8 
 
If the plot is dominated by the mountain hemlock group (TSMEGRP), then 
 
If CANCOV < 20%, then 
 If the canopy is single storied, then 
  Assign fuel model 1 
 Otherwise 
  Assign fuel model 5 
If 20% < CANCOV < 50%, then 
 If the canopy is single storied, then 
  If the QMDA_DOM1 < 3”, then 
   Assign fuel model 5 
  Otherwise 
   If QMDA_DOM1 < 20”, then 
    Assign fuel model 8 
   Otherwise 
    Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
If 50% < CANCOV < 80%, then 
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 If the quadratic mean diameter (QMDA_DOM1) < 3”, then 
  Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
If CANCOV > 80%, then 
 Assign fuel model 8 
 
If the plot is dominated by the western larch group (LAOCGRP), then 
 
If the quadratic mean diameter (QMDA_DOM1) < 3”, then 
 If CANCOV < 20%, then 
  Assign fuel model 1 
 Otherwise 
  If CANCOV < 80%, then 
   Assign fuel model 5 
  Otherwise 
   Assign fuel model 8 
If 3” < QMDA_DOM1 < 8”, then 
 If CANCOV < 20%, then 
  If the canopy is single storied, then 
   Assign fuel model 1 
  Otherwise 
   Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
If 8” < QMDA_DOM1 < 20”, then 
 If the canopy is single storied, then 
  If CANCOV < 20%, then 
   Assign fuel model 5 
  Otherwise 
   Assign fuel model 8 
 Otherwise 
  Assign fuel model 8 
If QMDA_DOM1 > 20%, then 
 If CANCOV < 20%, then 
  If the canopy is single storied, then 
   Assign fuel model 1 
  Otherwise 
   Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
 
If the plot is dominated by the moist habitat group (MOISTGRP), then 
 
If CANCOV < 20%, then 
 If the canopy is single storied, then 
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  If QMDA_DOM1 < 8”, then 
   Assign fuel model 1 
  Otherwise 
   If QMDA_DOM1 < 20”, then 
    Assign fuel model 5 
   Otherwise 
    Assign fuel model 1 
 Otherwise 
  Assign fuel model 5 
If 20% < CANCOV <50%, then 
 If the canopy is single storied, then 
  If QMDA_DOM1 < 3”, then 
   Assign fuel model 5 
  Otherwise 
   If QMDA_DOM1 < 20”, then 
    Assign fuel model 8 
   Otherwise 
    Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
If 50% < CANCOV < 80%, then 
 If QMDA_DOM < 3”, then 
  Assign fuel model 5 
 Otherwise 
  Assign fuel model 8 
If CANCOV > 80%, then 
 Assign fuel model 8 
 

3.3 Sierra Nevada 
The methods for assigning fuel models to each plot were adapted from the description of the 
Western Sierra variant of FFE-FVS in (Reinhardt and Crookston 2003), but have been modified 
to reflect the fuels and forest structure variables that are available in the GNN-Fire database, and 
to incorporate recommendations from Dave Sapsis of the California Department of Forestry. 

The general procedure for the fuel model crosswalk is as follows. Individual steps are described 
in more detail in subsequent sections. 

Step 1: Classify each plot into a forest cover type based on the California Wildlife Habitat 
Relationships System (Mayer and Laudenslayer 1988). 

Step 2: Classify each plot into canopy cover and size classes based on the California Wildlife 
Habitat Relationships System (Mayer and Laudenslayer 1988). 

Step 3: Assign a fuel model to each plot based on its dominant species class, canopy cover class, 
and size class. 
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3.3.1 Step 1: Forest Cover Type 
Forested plots were assigned cover types based on the proportion of their basal area falling 
within various species groups. The algorithm for classifying each plot consisted of the following 
steps: 

1. If the quadratic mean diameter of trees on the plot was less than 2.54 cm or the canopy cover 
of the plot was less than 10%, then the plot was classified as either a Nonstocked or Montane 
chaparral class. 

 1a. If total shrub cover was greater than 50%, the plot was classified as Montane  
 chaparral. 

 1b. Otherwise, the plot was classified as Nonstocked. 

2. Otherwise, if hardwoods comprised more than 50% of the total plot basal area, the plot was 
classified as Hardwood. 

3. Otherwise, if Ponderosa pine comprised more than 80% of the total plot basal area, the plot 
was classified as Ponderosa pine. 

4. Otherwise, if Red fir plus Shasta red fir comprised more than 80% of the total plot basal area, 
the plot was classified as Red fir. 

5. Otherwise, if White fir comprised more than 80% of the total plot basal area, the plot was 
classified as White fir. 

6. Otherwise, if Douglas-fir comprised more than 80% of the total plot basal area, the plot was 
classified as Douglas-fir. 

7. Otherwise, if Giant sequoia comprised more than 80% of the total plot basal area, the plot was 
classified as Giant sequoia. 

8. Otherwise, if Jeffery pine comprised more than 80% of the total plot basal area, the plot was 
classified as Jeffery pine. 

9. Otherwise, if Lodgepole pine comprised more than 80% of the total plot basal area, the plot 
was classified as Lodgepole pine. 

10. Otherwise, if the total basal area of Pinus spp. comprised more than 50% of the total conifer 
basal area, the plot was classified as Pine mixed-conifer. 

11. Otherwise, if the total basal area of Abies spp. comprised more than 50% of the total conifer 
basal area, the plot was classified as Fir mixed-conifer. 

12. Otherwise, if the total basal area of all conifers except Abies spp. and Pinus spp. comprised 
more than 50% of the total conifer basal area, the plot was classified as Other conifer. 

13. Otherwise, the plot was classified as Fir mixed-conifer (the default class) 
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Note that plots that fall through to the end of the algorithm and are assigned the default class are 
actually labeled NCL (for nonclassified) in the database. These plots are still treated as if they 
belong to the Fir mixed conifer class when fuel models are assigned in Step 3. The NCL label 
was included to easily distinguish between plots that are assigned to the Fir-mixed conifer class 
based on the 50% of total conifer basal area threshold (these are assigned an FMC label) versus 
those that are assigned to the Fir-mixed conifer as the default class (these get the NCL label). 

3.3.2 Step 2: Structural Classification 
Non-stocked plots (with quadratic mean diameter < 2.54 cm or canopy cover < 10%) were not 
assigned a size or density class. For other plots, tree size and tree density classes were assigned 
based on the quadratic mean diameter of dominant and co-dominant trees (QMDA_DOM1 in the 
GNN-Fire plot database) and overstory canopy cover (CANCOV in the GNN-Fire plot 
database). The cutoffs used for assigning these classes are listed in Table 3.1.  

Table 3.1: Forested plots are assigned to a CWHR size and density classes using the following 
criteria. 
Tree Size (DBH 
cm)1 

Canopy Cover (%) CWHR tree size 
class 

CWHR tree density 
class 

Any < 10 1 NA 
2.54 >=10 1 NA 
2.54-15.24 10-24 2 S 
2.54-15.24 25-39 2 P 
2.54-15.24 40-59 2 M 
2.54-15.24 >= 60 2 D 
15.24-27.94 10-24 3 S 
15.24-27.94 25-39 3 P 
15.24-27.94 40-59 3 M 
15.24-27.94 >= 60 3 D 
27.94-60.96 10-24 4 S 
27.94-60.96 25-39 4 P 
27.94-60.96 40-59 4 M 
27.94-60.96 >= 60 4 D 
> 60.96 10-24 5 S 
> 60.96 25-39 5 P 
> 60.96 40-59 5 M 
> 60.96 >= 60 5 D 
> 60.96 >= 60% total and  

> 1 canopy layer 
6 NA 

1QMD of dominant and codominant trees 
 
Size class 6 from the California Wildlife Habitat Relationships system was a multi-layered stand 
class. In addition to the size and canopy cover criteria, plots belonging to this class were also 
required to have more than one distinctive canopy layer. The number of canopy layers was 
obtained from the COLA_LAYERS field in the GNN-Fire plot database. 
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3.3.3 Step 3: Fuel Model Assignment 
All plots classified as Nonstocked were assigned a fuel model 5. 

All plots classified as Montane chaparral were assigned a fuel model 26 (Modified chaparral, see 
Appendix A). 

Otherwise, a fuel model is assigned to each plot based on its forest cover type, size class, and 
density class (Table 3.2). This look-up table is based on recommendations from Dave Sapsis of 
the California Department of Forestry. Although it is based on the same format as the look-up 
table in Reinhardt and Crookston (2003), the fuel model assignments are different. 

Table 3.2: Fuel model assignments for forested habitats 
Size class 1 2 3 4 5 6 
Density class  S P D M S P D M S P D M S P D M  
Cover type                   
Pine 5 5 5 9 9 26 26 10 10 26 26 10 10 26 26 10 10 10 
Red fir 5 5 5 8 8 11 11 8 8 8 8 8 8 8 8 8 8 10 
White fir 5 5 5 8 8 11 11 8 8 9 9 11 11 9 9 11 11 10 
Douglas-fir 5 5 5 9 9 5 5 8 8 11 11 10 10 11 11 10 10 10 
Giant sequoia 5 5 5 9 9 9 9 9 9 9 9 9 10 9 9 9 10 10 
Jeffrey pine 5 5 5 9 9 2 2 9 11 2 9 11 9 2 2 9 11 10 
Hardwoods 5 5 5 9 9 5 9 8 8 5 9 9 8 9 9 9 8 9 
Lodgepole pine 5 5 5 8 8 8 8 8 8 5 8 8 8 5 8 8 8 10 
Pine mixed con 5 5 5 9 9 26 11 10 10 26 10 10 10 26 10 10 10 10 
Fir mixed conifer 5 9 5 8 8 26 11 10 8 5 5 9 10 5 10 9 10 10 
Other conifers 5 8 5 9 10 6 10 10 10 26 10 10 10 26 10 10 10 10 
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Appendix 3 – Core vegetation and fuels variables joined to GNN imputation maps and used in accuracy assessments for species-size and structure
models. All variables are at the at the forest class level (summary of all portions of a plot that are forest). All variables are in metric units; updated
versions of our plot databases with English-unit-versions of the variables will be made available for download from our website.

Category Variable name Description
Plot
identification

PLTID Unique plot identification number.
FCID Unique forest class identification number.
DATA_SOURCE Source of the plot data: BLMWO = BLM in western Oregon, FIACA = FIA in California, FIAEW = FIA in

eastern Washington, FIAWO = FIA in western Oregon, NCNP = North Cascades National Park, R5 =
Forest Service Region 5, R6 = Forest Service Region 6, SEKI = Sequoia-Kings Canyon National Park,
YOSE = Yosemite National Park.

Live tree BAA_GE_3 Basal area (m2/ha) of all live trees >=2.54 cm dbh
BAC_GE_3 Basal area (m2/ha) of all live conifers >=2.54 cm dbh
BAH_GE_3 Basal area (m2/ha) of all live hardwoods >=2.54 cm dbh
BAH_PROP Proportion of total live tree basal area that is hardwood.
QMDA_DOM Quadratic mean diameter (QMD) (cm) of all dominant and codominant trees.
QMDC_DOM QMD (cm) of all dominant and codominant conifers.
QMDH_DOM QMD (cm) of all dominant and codominant hardwoods.
CANCOV Canopy cover (percent) of all live trees, calculated using methods in the Forest Vegetation Simulator

(Crookston and Stage 1999).
CANCOV_CON Canopy cover (percent) of all conifers, calculated using methods in the Forest Vegetation Simulator

(Crookston and Stage 1999).
CANCOV_HDW Canopy cover (percent) of all hardwoods, calculated using methods in the Forest Vegetation Simulator

(Crookston and Stage 1999).
STNDHGT Average height (m) of dominant and codominant trees.
FORTYPBA Forest type (alpha code comprised of one or two species codes). Assigned based on plurality of species

basal area, as follows. If CANCOV <10 then FORTYPBA = ‘remnant.’ If BAH_PROP >=0.65 and >=80%
of the hardwood basal area is in one species, a single hardwood species is assigned; otherwise FORTYPBA
is named for the two predominant hardwood species. If BAH_PROP 0.20-0.64, FORTYPBA is named by
the dominant hardwood species and the dominant conifer species, shown in order of most basal area. If
BAHPROP <0.20 and >=80% of total conifer basal areas is in one species, FORTYPBA is that single
(conifer) species; otherwise, FORTYPBA is named for the two predominant conifer species. Species codes
are defined in the plot database.
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VEGCLASS Vegetation class from Johnson and O’Neil (2001)
1  Sparse (CANCOV <10)
2  Open (CANCOV 10-39)
3  Broadleaf, sap/pole, mod/closed (CANCOV >=40, BAH_PROP >=0.65, QMDA_DOM <25 cm )
4  Broadleaf, sm/med/lg, mod/closed (CANCOV >=40, BAH_PROP >=0.65, QMDA_DOM >25 cm)
5  Mixed, sap/pole, mod/closed (CANCOV >=40, BAH_PROP 0.20-0.64, QMDA_DOM <25 cm)
6  Mixed, sm/med, mod/closed (CANCOV >=40, BAH_PROP 0.20-0.64, QMDA_DOM 25-50 cm)
7  Mixed, large+giant, mod/closed (CANCOV >=40, BAH_PROP 0.20-0.64, QMDA_DOM >50 cm)
8  Conifer, sap/pole, mod/closed (CANCOV >=40, BAH_PROP <0.20, QMDA_DOM <25 cm)
9  Conifer, sm/med, mod/closed (CANCOV >=40, BAH_PROP <0.20, QMDA_DOM 25-50 cm)
10  Conifer, large, mod/closed (CANCOV >=40, BAH_PROP <0.20, QMDA_DOM 50-75 cm)
11  Conifer, giant, mod/closed (CANCOV >=40, BAH_PROP <0.20, QMDA_DOM >75 cm)

SIZECL Size class from Johnson and O’Neil (2001, p. 116-119)
1  Shrub/seedling (QMDA_DOM <2.5 or CANCOV <10)
2  Sapling/pole (QMDA_DOM >=2.5 and <25.0)
3  Small tree (QMDA_DOM >=25.0 and <37.5)
4  Medium tree (QMDA_DOM >=37.5 and <50.0)
5  Large tree (QMDA_DOM >=50.0 and <75)
6  Giant tree (QMDA_DOM >=75.0)

COVCL Cover class from Johnson and O’Neil (2001, p. 116-119)
1  Sparse/remnant (CANCOV <10)
2  Open (CANCOV >=10 and <40)
3  Moderate (CANCOV >=40 and <70)
4  Closed (CANCOV >=70)

CWHR_SIZE Size class from California Wildlife Habitat Relationships Program (Mayer and Laudenslayer 1988)
(California only)
1  Seedling tree (CANCOV < 10)
2  Sapling tree (CANCOV >= 10 and QMDA_DOM 2.54-15.24)
3  Pole tree (CANCOV >= 10 and QMDA_DOM 15.24-27.94)
4  Small tree (CANCOV >= 10 and QMDA_DOM 27.94-60.96)
5  Medium/large tree (CANCOV >= 10 and QMDA_DOM > 60.96)
6  Multi-layered tree (CANCOV >= 60 and at least two canopy layers present)
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CWHR_DENSITY Canopy closure class from CWHR (Mayer and Laudenslayer 1988) (California only)
NA (not applicable – CANCOV <10)
S (sparse, CANCOV 10-24)
P (open, CANCOV 25-39)
M (moderate, CANCOV 40-59)
D (dense, CANCOV 60-100)

Understory SHRCOV Cumulative cover (percent) of all shrubs (may be >100%). [Not available for Oregon.]
Snag STPH_GE_25 Density (trees/ha) of snags >=25.0 cm dbh and >=2.0 m tall.

STPH_GE_50 Density (trees/ha) of snags >=50.0 cm dbh and >=2.0 m tall.
SVPH_GE_25 Volume (m3/ha) of snags >=25.0 cm dbh and >=2.0 m tall.
SVPH_GE_50 Volume (m3/ha) of snags >=50.0 cm dbh and >=2.0 m tall.
SBPH_5_9 Biomass (kg/ha) of snags 5-9 inches (12.7-22.9 cm) dbh and >=2.0 m tall.
SBPH_9_20 Biomass (kg/ha) of snags 9-20 inches (22.9-50.8 cm) dbh and >=2.0 m tall.
SBPH_GE_20 Biomass (kg/ha) of snags >=20 inches (50.8 cm) dbh and >=2.0 m tall.

Down wood DVPH_GE_25 Volume (m3/ha) of down wood >=25.4 cm diameter at intercept and >=1 m long. [R5 plots limited to pieces
>=3.0 m long. FIA plots do not include decay class 5 logs.]

DVPH_GE_50 Volume (m3/ha) of down wood >=50.0 cm diameter at intercept and >=1 m long. [R5 plots limited to pieces
>=3.0 m long. FIA plots do not include decay class 5 logs.]

DBPH_9_20 Biomass (kg/ha) of down wood 9-20 inches (22.9-50.8 cm) diameter at large end and >=1 m long. [R5 plots
limited to >=10 in (25.4 cm) diameter and >=3.0 m long. FIA plots do not include decay class 5 logs.
Missing decay class set=3 for YOSE.]

DBPH_GE_20 Biomass (kg/ha) of down wood >=20 inches (50.8 cm) diameter at intercept and >=1 m long. [R5 plots
limited to >=3.0 m long. FIA plots do not include decay class 5 logs. Missing decay class set=3 for YOSE.]
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Canopy and
surface fuels

PCANFWT Total weight of all available canopy fuels (kg/ha), which includes the mass of live conifer foliage plus one-
half the mass of live and dead conifer branches in the 0-0.25 inch size class (see Appendix 2). Based on
equations for the coastal Pacific Northwest (used for Oregon). 

RCANFWT Total weight of all available canopy fuels (kg/ha), which includes the mass of live conifer foliage plus one-
half the mass of live and dead conifer branches in the 0-0.25 inch size class (see Appendix 2). Based on
equations for the northern Rocky Mountains (used for California and Washington).

PHTCBU2 Height to crown base (m) computed with vertical layering method, ‘uncompacted’ crowns, and equations
for the coastal Pacific Northwest (see Appendix 2) (used for Oregon). Code ‘999' is assigned where there is
minimal crown.

RHTCBU2 Height to crown base (m) computed with vertical layering method, ‘uncompacted’ crowns, and equations
for the northern Rocky Mountains (see Appendix 2) (used for California and Washington). Code ‘999' is
assigned where there is minimal crown.

PCBDU2 Canopy bulk density (kg/m3) computed with vertical layering method, ‘uncompacted’ crowns, and
equations for the coastal Pacific Northwest (see Appendix 2) (used for Oregon).

RCBDU2 Canopy bulk density (kg/m3) computed with vertical layering method, ‘uncompacted’ crowns, and using
equations for the northern Rocky Mountains (see Appendix 2) (used for California and Washington).

FUEL_MODEL Fire behavior fuel model. For all study areas, classification rules were modified slightly from those in
documentation for the appropriate variant of FVS-FFE and to reflect the fuels and vegetation variables
available in the GNNFire database (see Appendix 2) and local expert knowledge.
1  short grass
2  timber (grass and understory)
5  brush
6  dormant brush, hardwood slash
8  closed timber litter
9  hardwood litter
10  timber (litter and understory)
11  light logging slash
12  medium logging slash
26  modified chaparral (California)
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Appendix 4 – Directory structure and file names for final products on enclosed DVDs. 
 

Filename File type Description 

Publications and other products 

\pubs_and_reports\final_report_01-1-4-09.pdf Adobe pdf JFSP final report 

\pubs_and_reports\pierce_etal_in-prep_EcoApp.pdf Adobe pdf draft GNNFire manuscript to be submitted to Ecological 
Applications (do not distribute) 

\pubs_and_reports\ohmann_etal_inpress_EcoApp.pdf Adobe pdf Ohmann et al. (in press) 

\pubs_and_reports\ohmann_gregory_2002_CJFR.pdf Adobe pdf Ohmann and Gregory (2002) 

\pubs_and_reports\pierce_etal_2004_esa_poster.pdf Adobe pdf poster from ESA (2004) 

\pubs_and_reports\wimberly_etal_2003_fireconf.pdf Adobe pdf Wimberly et al. (2003) 

\pubs_and_reports\wimberly_Ohmann_2004_LandEco.pdf Adobe pdf Wimberly et al. (2004) 

\pubs_and_reports\gregory_ohmann_2004_GNNrun_poster.pdf Adobe pdf poster from US-IALE software swap meet (2004) 

All study areas 

\all_study_areas\documentation\plot_database_documentation.m
db 

Access database code definitions and data dictionary for plot data 

\all_study_areas\gnnrun_software\gnnrun.exe Windows 
executable 

software for running GNN 

\all_study_areas\gnnrun_software\gnnrun_users_guide.pdf 
         

Adobe pdf users guide for running GNN 
 
 

California    

\california\models\accuracy_assessment\interplots_ca.pdf Adobe pdf Histogram of inter-plot distances in gradient space to 
accompany NNDIST grid (all models) 

\california\models\accuracy_assessment\spp_kappa_ca.pdf Adobe pdf Kappa statistics for species presence/absence (spp model) 

\california\models\accuracy_assessment\vegclass_error_matrix_
ca.pdf 

Adobe pdf Two-way error matrix for vegetation class (sppsz and struct 
models) 
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\california\models\accuracy_assessment\vegclass_kappa_ca.pdf Adobe pdf Kappa statistics for vegetation class (sppsz and struct 
models) 

\california\models\accuracy_assessment\vegclass_area_histogra
ms_ca.xls 

Adobe pdf Distribution of forest area among vegetation classes 
predicted from GNN and estimated from grid plots (sppsz 
and struct models) 

\california\models\accuracy_assessment\fuelmod_area_histogra
ms_ca.pdf 

Adobe pdf Distribution of forest area among fuel models predicted 
from GNN and estimated from grid plots 

\california\models\accuracy_assessment\scatters_ca_sppsz_fil.pd
f 

Adobe pdf Scatterplots and correlations between GNN-predicted vs. 
plot-observed values for selected vegetation and fuels 
variables 

\california\models\accuracy_assessment\scatters_ca_struct_fil.pd
f 

Adobe pdf Scatterplots and correlations between GNN-predicted vs. 
plot-observed values for selected vegetation and fuels 
variables 

\california\models\accuracy_assessment\scatters_ca_struct_unf.p
df 

Adobe pdf Scatterplots and correlations between GNN-predicted vs. 
plot-observed values for selected vegetation and fuels 
variables 

\california\models\ca_spp\canoco.out text output file from Canoco software 

\california\models\ca_spp\canoco.sol    text solution file from Canoco software 

\california\models\ca_spp\ca_spp ArcGIS grid GNN imputation map 

\california\models\ca_spp\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\california\models\ca_sppsz_fil\canoco.out text output file from Canoco software 

\california\models\ca_sppsz_fil\canoco.sol text solution file from Canoco software 

\california\models\ca_sppsz_fil\ca_sppsz_fil ArcGIS grid GNN imputation map 

\california\models\ca_sppsz_fil\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 
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\california\models\ca_struct_fil\canoco.out text output file from Canoco software 

\california\models\ca_struct_fil\canoco.sol text solution file from Canoco software 

\california\models\ca_struct_fil\ca_struct_fil ArcGIS grid GNN imputation map 

\california\models\ca_struct_fil\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\california\models\ca_struct_unf\canoco.out text output file from Canoco software 

\california\models\ca_struct_unf\canoco.sol text output file from Canoco software 

\california\models\ca_struct_unf\ca_struct_unf ArcGIS grid GNN imputation map 

\california\models\ca_struct_unf\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\california\plot\ca_plots.mdb Access database Plot data used in GNN model development and mapping 

\california\spatial\carefbnd_po ArcGIS polygon Study area boundary 

\california\spatial\camask ArcGIS grid Nonforest mask 

\california\spatial\ancillary\nlcdorig30 ArcGIS grid Original NLCD grid 

\california\spatial\ancillary\owner30 ArcGIS grid Ownership classes 

\california\spatial\predictors\landsat\tm10030 ArcGIS grid Landsat ETM band 1, 2000 

\california\spatial\predictors\landsat\tm20030 ArcGIS grid Landsat ETM band 2, 2000 

\california\spatial\predictors\landsat\tm30030 ArcGIS grid Landsat ETM band 3, 2000 

\california\spatial\predictors\landsat\tm40030 ArcGIS grid Landsat ETM band 4, 2000 

\california\spatial\predictors\landsat\tm50030 ArcGIS grid Landsat ETM band 5, 2000 

\california\spatial\predictors\landsat\tm70030 ArcGIS grid Landsat ETM band 7, 2000 

\california\spatial\predictors\landsat\tm19230 ArcGIS grid Landsat ETM band 1, 1992 
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\california\spatial\predictors\landsat\tm29230 ArcGIS grid Landsat ETM band 2, 1992 

\california\spatial\predictors\landsat\tm39230 ArcGIS grid Landsat ETM band 3, 1992 

\california\spatial\predictors\landsat\tm49230 ArcGIS grid Landsat ETM band 4, 1992 

\california\spatial\predictors\landsat\tm59230 ArcGIS grid Landsat ETM band 5, 1992 

\california\spatial\predictors\landsat\tm79230 ArcGIS grid Landsat ETM band 7, 1992 

\california\spatial\climate\anngdd30 ArcGIS grid Annual growing degree days (rounded to nearest integer) 

\california\spatial\climate\annpre30 ArcGIS grid Annual precipitation (natural logarithm mm) (scaled * 1000 
and converted to integer) 

\california\spatial\climate\annsw30 ArcGIS grid Annual sum of total daily incident shortwave radiative flux 
(MJ-2 day-1) (scaled * 10 and converted to integer) 

\california\spatial\climate\annvp30 ArcGIS grid Annual vapor pressure (scaled * 10 and converted to 
integer) 

\california\spatial\climate\augmaxt30 ArcGIS grid Mean August maximum temperature (degrees C) (scaled * 
100 and converted to integer) 

\california\spatial\climate\contpre30 ArcGIS grid Percentage of annual precipitation falling in June-August 
(scaled * 1000 and converted to integer) 

\california\spatial\climate\decmint30 ArcGIS grid Mean December minimum temperature (degrees C) (scaled 
* 1000 and converted to integer) 

\california\spatial\climate\smrtp30 ArcGIS grid Growing season moisture stress (ratio of temperature to 
precipitation from May-September) (scaled * 1000 and 
converted to integer) 

\california\spatial\location\xutm30 ArcGIS grid UTM X coordinate (m) 

\california\spatial\location\yutm30 ArcGIS grid UTM Y coordinate (m) 

\california\spatial\topography\dem30 ArcGIS grid Elevation (m) 
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\california\spatial\topography\prr30 ArcGIS grid Potential relative radiation 

\california\spatial\topography\slppct30 ArcGIS grid Slope (percent) (rounded to nearest integer) 

\california\spatial\topography\tpi45030 ArcGIS grid Topographic position index, calculated as difference 
between cell’s elevation and mean elevation of cells within 
a 450-m-radius window 

\california\spatial\disturbance\chg1dec30 ArcGIS grid Disturbed patches mapped using change detection of 
Landsat TM imagery (from California Land Cover Mapping 
& Monitoring Program, USDA Forest Service and CDF) 

\california\spatial\disturbance\fire199330 ArcGIS grid Fire perimeters and years since burn (up to 1993) (from 
CDF) 

\california\spatial\disturbance\fire200030 ArcGIS grid Fire perimeters and years since burn (up to 2000) (from 
CDF) 
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Oregon 

\oregon\models\accuracy_assessment\interplots.pdf Adobe pdf Histogram of inter-plot distances in gradient space to 
accompany NNDIST grid (all models) 

\oregon\models\accuracy_assessment\spp_kappa_or.pdf Adobe pdf Kappa statistics for species presence/absence (spp model) 

\oregon\models\accuracy_assessment\vegclass_error_matrix_or.
pdf 

Adobe pdf Two-way error matrix for vegetation class (sppsz and struct 
models) 

\oregon\models\accuracy_assessment\vegclass_kappa_or.pdf Adobe pdf Kappa statistics for vegetation class (sppsz and struct 
models) 

\oregon\models\accuracy_assessment\fuelmod_area_histograms
_or.pdf 

Adobe pdf Distribution of forest area among fuel models predicted 
from GNN and estimated from grid plots (sppsz and struct 
models) 

\oregon\models\accuracy_assessment\vegclass_area_histograms
_or.xls 

Adobe pdf Distribution of forest area among vegetation classes 
predicted from GNN and estimated from grid plots (sppsz 
and struct models) 

\oregon\models\accuracy_assessment\scatters_or_sppsz_fil.pdf Adobe pdf Scatterplots and correlations between GNN-predicted vs. 
plot-observed values for selected vegetation and fuels 
variables 

\oregon\models\accuracy_assessment\scatters_or_struct_fil.pdf Adobe pdf Scatterplots and correlations between GNN-predicted vs. 
plot-observed values for selected vegetation and fuels 
variables 

\oregon\models\accuracy_assessment\scatters_or_struct_unf.pdf Adobe pdf Scatterplots and correlations between GNN-predicted vs. 
plot-observed values for selected vegetation and fuels 
variables 

\oregon\models\or_spp\canoco.out text output file from Canoco software 

\oregon\models\or_spp\canoco.sol    text solution file from Canoco software 

\oregon\models\or_spp\or_spp ArcGIS grid GNN imputation map 
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\oregon\models\or_spp\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\oregon\models\or_sppsz_fil\canoco.out text output file from Canoco software 

\oregon\models\or_sppsz_fil\canoco.sol text solution file from Canoco software 

\oregon\models\or_sppsz_fil\or_sppsz_fil ArcGIS grid GNN imputation map 

\oregon\models\or_sppsz_fil\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\oregon\models\or_struct_fil\canoco.out text output file from Canoco software 

\oregon\models\or_struct_fil\canoco.sol text solution file from Canoco software 

\oregon\models\or_struct_fil\or_struct_fil ArcGIS grid GNN imputation map 

\oregon\models\or_struct_fil\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\oregon\models\or_struct_unf\canoco.out text output file from Canoco software 

\oregon\models\or_struct_unf\canoco.sol text output file from Canoco software 

\oregon\models\or_struct_unf\or_struct_unf ArcGIS grid GNN imputation map 

\oregon\models\or_struct_unf\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\oregon\plot\or_plots.mdb Access database Plot data used in GNN model development and mapping 

\oregon\spatial\orrefbnd_po ArcGIS polygon Study area boundary 

\oregon\spatial\ormask30 ArcGIS grid Nonforest mask 

\oregon\spatial\ancillary\nlcdorig30 ArcGIS grid Original NLCD grid 

\oregon\spatial\ancillary\owner30 ArcGIS grid Ownership classes 

\oregon\spatial\predictors\landsat\tm19630 ArcGIS grid Landsat ETM band 1, 1996 
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\oregon\spatial\predictors\landsat\tm29630 ArcGIS grid Landsat ETM band 2, 1996 

\oregon\spatial\predictors\landsat\tm39630 ArcGIS grid Landsat ETM band 3, 1996 

\oregon\spatial\predictors\landsat\tm49630 ArcGIS grid Landsat ETM band 4, 1996 

\oregon\spatial\predictors\landsat\tm59630 ArcGIS grid Landsat ETM band 5, 1996 

\oregon\spatial\predictors\landsat\tm79630 ArcGIS grid Landsat ETM band 7, 1996 

\oregon\spatial\climate\anngdd30 ArcGIS grid Annual growing degree days (rounded to nearest integer) 

\oregon\spatial\climate\annpre30 ArcGIS grid Annual precipitation (natural logarithm, mm) (scaled * 1000 
and converted to integer) 

\oregon\spatial\climate\annsw30 ArcGIS grid Annual sum of total daily incident shortwave radiative flux 
(MJ-2 day-1) (scaled * 10 and converted to integer) 

\oregon\spatial\climate\annvp30 ArcGIS grid Annual vapor pressure (rounded to nearest integer) 

\oregon\spatial\climate\augmaxt30 ArcGIS grid Mean August maximum temperature (degrees C) (scaled * 
100 and converted to integer) 

\oregon\spatial\climate\contpre30 ArcGIS grid Percentage of annual precipitation falling in June-August 
(scaled * 1000 and converted to integer) 

\oregon\spatial\climate\decmint30 ArcGIS grid Mean December minimum temperature (degrees C) (scaled 
* 1000 and converted to integer) 

\oregon\spatial\climate\smrpre30 ArcGIS grid Mean precipitation from May-September (natural logarithm, 
mm) (scaled * 1000 and converted to integer) 

\oregon\spatial\climate\smrtp30 ArcGIS grid Growing season moisture stress (ratio of temperature to 
precipitation from May-September) (scaled * 1000 and 
converted to integer) 

\oregon\spatial\climate\stratus30 ArcGIS grid Percentage of hours in July with cloud ceiling of marine 
stratus <1,524 m and visibility <8 m (scaled * 100 and 
converted to integer) 
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\oregon\spatial\location\xutm30 ArcGIS grid UTM X coordinate (m) 

\oregon\spatial\location\yutm30 ArcGIS grid UTM Y coordinate (m) 

\oregon\spatial\topography\dem30 ArcGIS grid Elevation (m) 

\oregon\spatial\topography\prr30 ArcGIS grid Potential relative radiation 

\oregon\spatial\topography\slppct30 ArcGIS grid Slope (percent) (rounded to nearest integer) 

\oregon\spatial\topography\tpi45030 ArcGIS grid Topographic position index, calculated as difference 
between cell’s elevation and mean elevation of cells within 
a 450-m-radius window 

\oregon\spatial\disturbance\disttime9630 ArcGIS grid Years since stand-replacing disturbance, from change 
detection of 1972-1996 Landsat imagery. Stands 
undisturbed since 1972 coded to ‘80.’ 

\oregon\spatial\ownership\blm30 ArcGIS grid Bureau of Land Management ownership (1 = BLM, 0 = 
other) 

\oregon\spatial\ownership\usfs30 ArcGIS grid USDA Forest Service ownership (1 = USFS, 0 = other) 
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Washington 

\washington\models\accuracy_assessment\interplots.pdf Adobe pdf Histogram of inter-plot distances in gradient space to 
accompany NNDIST grid (all models) 

\washington\models\accuracy_assessment\spp_kappa_wa.pdf Adobe pdf Kappa statistics for species presence/absence (spp model) 

\washington\models\accuracy_assessment\vegclass_error_matrix
_wa.pdf 

Adobe pdf Two-way error matrix for vegetation class (sppsz and struct 
models) 

\washington\models\accuracy_assessment\vegclass_kappa_wa.p
df 

Adobe pdf Kappa statistics for vegetation class (sppsz and struct 
models) 

\washington\models\accuracy_assessment\fuelmod_area_histogr
ams_wa.pdf 

Adobe pdf Distribution of forest area among fuel models predicted 
from GNN and estimated from grid plots (sppsz and struct 
models) 

\washington\models\accuracy_assessment\vegclass_area_histogr
ams_wa.xls 

Adobe pdf Distribution of forest area among vegetation classes 
predicted from GNN and estimated from grid plots (sppsz 
and struct models) 

\washington\models\accuracy_assessment\scatters_wa_sppsz_fil.
pdf 

Adobe pdf Scatterplots and correlations between GNN-predicted vs. 
plot-observed values for selected vegetation and fuels 
variables 

\washington\models\accuracy_assessment\scatters_wa_struct_fil
.pdf 

Adobe pdf Scatterplots and correlations between GNN-predicted vs. 
plot-observed values for selected vegetation and fuels 
variables 

\washington\models\accuracy_assessment\scatters_wa_struct_un
f.pdf 

Adobe pdf Scatterplots and correlations between GNN-predicted vs. 
plot-observed values for selected vegetation and fuels 
variables 

\washington\models\wa_spp\canoco.out text output file from Canoco software 

\washington\models\wa_spp\canoco.sol    text solution file from Canoco software 

\washington\models\wa_spp\wa_spp ArcGIS grid GNN imputation map 
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\washington\models\wa_spp\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\washington\models\wa_sppsz_fil\canoco.out text output file from Canoco software 

\washington\models\wa_sppsz_fil\canoco.sol text solution file from Canoco software 

\washington\models\wa_sppsz_fil\wa_sppsz_fil ArcGIS grid GNN imputation map 

\washington\models\wa_sppsz_fil\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\washington\models\wa_struct_fil\canoco.out text output file from Canoco software 

\washington\models\wa_struct_fil\canoco.sol text solution file from Canoco software 

\washington\models\wa_struct_fil\wa_struct_fil ArcGIS grid GNN imputation map 

\washington\models\wa_struct_fil\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\washington\models\wa_struct_unf\canoco.out text output file from Canoco software 

\washington\models\wa_struct_unf\canoco.sol text output file from Canoco software 

\washington\models\wa_struct_unf\wa_struct_unf ArcGIS grid GNN imputation map 

\washington\models\wa_struct_unf\nndist ArcGIS grid GNN nearest-neighbor-distance map, converted to integer 
(NNDIST * 100) 

\washington\plot\wa_plots.mdb Access database Plot data used in GNN model development and mapping 

\washington\spatial\warefbnd_po ArcGIS polygon Study area boundary 

\washington\spatial\wamask30 ArcGIS grid Nonforest mask 

\washington\spatial\ancillary\nlcdorig30 ArcGIS grid Original NLCD grid 

\washington\spatial\ancillary\owner30 ArcGIS grid Ownership classes 

\washington\spatial\predictors\landsat\tm19230 ArcGIS grid Landsat ETM band 1, 1992 
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\washington\spatial\predictors\landsat\tm29230 ArcGIS grid Landsat ETM band 2, 1992 

\washington\spatial\predictors\landsat\tm39230 ArcGIS grid Landsat ETM band 3, 1992 

\washington\spatial\predictors\landsat\tm49230 ArcGIS grid Landsat ETM band 4, 1992 

\washington\spatial\predictors\landsat\tm59230 ArcGIS grid Landsat ETM band 5, 1992 

\washington\spatial\predictors\landsat\tm79230 ArcGIS grid Landsat ETM band 7, 1992 

\washington\spatial\predictors\landsat\tm10030 ArcGIS grid Landsat ETM band 1, 2000 

\washington\spatial\predictors\landsat\tm20030 ArcGIS grid Landsat ETM band 2, 2000 

\washington\spatial\predictors\landsat\tm30030 ArcGIS grid Landsat ETM band 3, 2000 

\washington\spatial\predictors\landsat\tm40030 ArcGIS grid Landsat ETM band 4, 2000 

\washington\spatial\predictors\landsat\tm50030 ArcGIS grid Landsat ETM band 5, 2000 

\washington\spatial\predictors\landsat\tm70030 ArcGIS grid Landsat ETM band 7, 2000 

\washington\spatial\climate\annfrost30 ArcGIS grid Mean number of days/yr when daily minimum temperature 
<=0.0 degrees C (scaled * 10 and converted to integer) 

\washington\spatial\climate\annpre30 ArcGIS grid Annual precipitation (natural logarithm, mm) (scaled * 1000 
and converted to integer) 

\washington\spatial\climate\annsw30 ArcGIS grid Annual sum of total daily incident shortwave radiative flux 
(MJ-2 day-1) (scaled * 10 and converted to integer) 

\washington\spatial\climate\annvp30 ArcGIS grid Annual vapor pressure (scaled * 10 and converted to 
integer) 

\washington\spatial\climate\augmaxt30 ArcGIS grid Mean August maximum temperature (degrees C) (scaled * 
100 and converted to integer) 

\washington\spatial\climate\contpre30 ArcGIS grid Percentage of annual precipitation falling in June-August 
(scaled * 100 and converted to integer) 
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\washington\spatial\climate\decmint30 ArcGIS grid Mean December minimum temperature (degrees C) (scaled 
* 100 and converted to integer) 

\washington\spatial\climate\smrpre30 ArcGIS grid Mean precipitation from May-September (natural logarithm, 
mm) (scaled * 1000 and converted to integer) 

\washington\spatial\climate\smrtp30 ArcGIS grid Growing season moisture stress (ratio of temperature to 
precipitation from May-September) (scaled * 1000 and 
converted to integer) 

\washington\spatial\location\xutm30 ArcGIS grid UTM X coordinate (m) 

\washington\spatial\location\yutm30 ArcGIS grid UTM Y coordinate (m) 

\washington\spatial\topography\dem30 ArcGIS grid Elevation (m) 

\washington\spatial\topography\prr30 ArcGIS grid Potential relative radiation 

\washington\spatial\topography\slppct30 ArcGIS grid Slope (percent) (rounded to nearest integer) 

\washington\spatial\topography\tpi45030 ArcGIS grid Topographic position index, calculated as difference 
between cell’s elevation and mean elevation of cells within 
a 450-m-radius window 

\washington\spatial\ownership\usfsblm30 ArcGIS grid Forest Service and BLM ownerships 
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