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Characterizing Forest Fragments in Boreal,
Temperate, and Tropical Ecosystems

An increased ability to analyze landscapes in a spatial
manner through the use of remote sensing leads to
improved capabilities for quantifying human-induced
forest fragmentation. Developments of spatially explicit
methods in landscape analyses are emerging. In this
paper, the image delineation software program eCogni-
tion and the spatial pattern analysis program FRAG-
STATS were used to quantify patterns of forest fragments
on six landscapes across three different climatic regions
characterized by different moisture regimes and different
influences of human pressure. Our results support the
idea that landscapes with higher road and population
density are more fragmented; however, there are other,
equally influential factors contributing to fragmentation,
such as moisture regime, historic land use, and fire
dynamics. Our method provided an objective means to
characterize landscapes and assess patterns of forest
fragments across different forested ecosystems by ad-
dressing the limitations of pixel-based classification and
incorporating image objects.

INTRODUCTION

Forest fragmentation is induced by human activities and
natural processes. Human-induced fragmentation increases
ecosystem vulnerability toward fire, the threat of invasive
species, and habitat decline (1). Forest fragmentation can be
defined as the breaking up of a forested unit, where the number
of patches and the amount of exposed edge increase while the
amount of core area decreases (2), whereby core area is defined
as a forested area free of edge effects (3). The size and shape of
forest fragments are strongly dependent on terrain character-
istics. For instance, roads in mountainous landscapes tend to
follow topographic contours and resemble stream networks,
while in flat terrain, road networks often exhibit systematic
gridded patterns. Anthropogenic factors that have been well-
described in recent literature and that affect forest fragmenta-
tion include roads (4), agriculture (5), forest logging practices
(6), and urbanization (7).

Although forest fragmentation has serious implications for
biodiversity loss and habitat decline (8, 9), another serious issue
involves fire. The effects of fragmentation and fire dynamics are
often intertwined. High densities of roads increase fire danger
by drying forests along edges, altering fuel loads, and providing
access to humans who ignite fires (10). Forest logging is often
accompanied with increased road density, influencing both
moisture regimes and the initiation of repeating fire cycles in
formerly unburned forests (11).

Recently, developments in the field of remote sensing have
increased the use of spatially explicit landscape analyses.
Moderate-resolution satellite imagery, primarily Landsat, can
be broadly applied for analyses of landscape patterns (12).
Studies of the process of landscape fragmentation rely predomi-
nantly on land-cover classification derived from Landsat
imagery (13). Landsat images are often preferred over other
moderate-resolution multispectral satellite imagery because they

have been available globally since 1972, and they also possess a
30 m pixel size that can resolve most changes in land use or land
cover.

Traditional image classification algorithms operate at the
level of a single pixel, ignoring the surrounding pixels; this
results in classification units of only one pixel in size, which
constitute noise for an analyst interested in landscape pattern or
a manager desiring management units of a useful minimum size.
Object-oriented methods for landscape classification and
analyses have been found to exceed accuracies of traditional
spectral classification methods that treat each pixel indepen-
dently (14–16). Object-oriented image segmentation algorithms
such as Fractal Net Evolution (17), available in the software
eCognition (18), consider both spectral and contextual infor-
mation to partition pixels into discrete image objects more
representative of landscape pattern. Image segmentation aims
to minimize variability within image objects while maximizing
variability between image objects. This effectively describes the
means by which an aerial photo interpreter delineates forest
stands into management units. As such, automated object-
oriented image segmentation, or the partitioning of similar
image pixels into landscape units (polygons), has potential to
replace slower and more subjective manual aerial photo
interpretation and stand delineation techniques.

Software programs such as FRAGSTATS have been widely
applied to calculate patch, class, and landscape metrics from
classified data layers (19). Landscape metrics have been used to
compare different landscape patterns (20) and to establish
relationships between ecological processes and individual
species (21). Appropriate caution must be exercised not to use
too many metrics (which number in the hundreds) without
recognizing and accounting for the high degree of redundancy
among them (4, 22).

The aforementioned developments in satellite remote sensing
(e.g., Landsat), digital image processing (e.g., eCognition), and
geographic analysis techniques (e.g., FRAGSTATS) are facil-
itating spatially explicit consideration of landscape patterns and
processes. A single image represents a mere snapshot of frag-
mentation (or any landscape process) in time, but much about a
landscape process may be inferred by landscape pattern (1).
Fragmentation can proceed slowly, or over longer time scales
than the available images record. A comparison of several
landscapes representing various stages of fragmentation along a
spatial chronosequence provides a useful means to quantify and
better understand fragmentation effects on landscapes in
general.

In this paper, we assess forest fragmentation in six forested
landscapes representing varying degrees of fragmentation
located in boreal, temperate, and tropical forests in North
America and the Caribbean. We hypothesize that landscapes
that have higher population density and more roads are
more fragmented. Our goal is to demonstrate that remotely
sensed data, image segmentation, and landscape analysis tools
can be a used in a consistent manner to characterize and
compare fragmented forest landscapes across boreal, temperate,
and tropical forest ecosystems in North America and the
Caribbean.
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METHODS

Study Area Descriptions

The six study areas (Fig. 1) analyzed in this study contrast high
population densities in tropical forest with much lower
population densities in temperate and boreal forests (Table 1).
The six selected study areas were selected to be approximately
the same size (;45 000 ha) and to represent dry and moist
boreal (Alaska and Minnesota), temperate (Washington and
Idaho), and tropical (Puerto Rico) forest types. These study
areas were selected for permission and practicality of access as
well as the availability of field data to validate the edge location
of forest fragments. For purposes of this study, we assumed
them to be representative of the six forest types sampled.

The dry boreal forest area (BO-DRY) is located in eastern
interior Alaska on Bureau of Land Management (BLM) land,
while the moist boreal forest (BO-MOIST) is located in north
central Minnesota in the Chippewa National Forest. The BO-
DRY area is more coniferous than deciduous and interspersed
by rivers, while the BO-MOIST area is more deciduous than
coniferous and more interspersed by lakes. Both temperate
areas occurred in coniferous forests on Native American Tribal
lands in the Interior Northwest: the TE-DRY area is located in
the Spokane Indian reservation in eastern Washington, while
the TE-MOIST area is located in the Coeur d’Alene Indian
Reservation in northern Idaho. The TE-DRY area is dominated
by Pinus ponderosa (ponderosa pine) and, on moister aspects,
Pseudotsuga menziesii (Douglas fir), while the TE-MOIST area
is a more species-rich mixed conifer forest. Both tropical forest

areas in Puerto Rico, TR-DRY and TR-MOIST, occur mainly
on private land. The TR-DRY area is located in southwestern
Puerto Rico and encompasses the Guánica Dry Forest Reserve
and has relatively high tree species diversity. The TR-MOIST
area occurs in the heavily populated northern coastal plain of
Puerto Rico, west of the San Juan Metropolitan area.
Importantly, dry forests have a more open canopy structure
than moist forests in all three climate regions (23). The terrain is
mainly flat in the two boreal landscapes, while it is generally
hilly in the two temperate and two tropical landscapes.

Forest patterns in the BO-DRY area have been fragmented
mostly by historic fires and less by human activities, with
relatively few settlements, roads, or logging. The BO-MOIST
area has been more fragmented by settlements, roads, logging,
and agriculture than by historic fires. Prescribed fires also have
fragmented forests in the TE-DRY area, as have logging, roads,
and settlements. The TE-MOIST area similarly has been
impacted by logging, roads, and settlements, with agriculture
an added factor. Both the TR-DRY and TR-MOIST areas have
been heavily fragmented due to high population densities,
contributing to widespread urbanization, dense road networks,
and intensive agriculture.

Field Data

In 2002 and 2003, field campaigns were conducted in Puerto
Rico, Washington, Idaho, Minnesota, and Alaska to measure
canopy and ground fuels along forest edge gradients. Forest
edges caused by roads, timber harvest, agriculture, or urban-

Figure 1. Study area locations (rectangles); BO-DRY in Alaska, BO-MOIST in Minnesota, TE-DRY in Washington, TE-MOIST in Idaho, and TR-
DRY and TR-MOIST in Puerto Rico.
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ization were sampled in the field across the full range of forest
structure types observed in each study landscape. A forest edge
was defined as a distinct nonforest-forest transition as observed
in the field, rather than a priori in a Landsat image. Thus, edges
were selected in the field somewhat subjectively but in a manner
that could not have biased the ability to detect the edges from
Landsat data. This was because the scale of a forest edge is finer
than that of 30 m Landsat pixels, or 15 m in the case of fused
pixels (i.e., fused by combining the 30 m multispectral bands
with the 15 m panchromatic band), as were used in this study.
Therefore, the position of a point along an irregular forest edge
selected for sampling was necessarily independent of its position
within the regular Landsat raster image grid encompassing that
edge.

At each field site, forest canopy and ground fuels were
measured using standard forestry techniques at five variable-
radius plots systematically located along a 60 m linear transect
oriented perpendicular to the forest edge (Fig. 2). Each transect
consisted of a nonforest plot centered 5 m outside the forest
edge, an edge plot centered 5 m inside the forest edge, and three
forest (interior) plots 15, 35, and 55 m inside the forest edge (see
Table 1 for the number of transects used for each study area).
Horizontal distances between plots along a transect were
measured with a laser rangefinder with slope correction. The
centers of the outermost (nonforest) and innermost plots of
each transect were geolocated by logging at least 100 static
positions with a Trimble ProXR geographic positioning system
(GPS), and these positions were subsequently differentially
corrected using Pathfinder Office v2.9 with a geolocational
error of ,1 m. The canopy and ground fuel values were
measured for other purposes and are inconsequential for this
paper, but the plot location data were used to train the image
classification of the landscapes into forested and nonforested
classes, as will be described in a subsequent section.

Image Preprocessing

The TE-DRY and TE-MOIST areas were situated within the
same Landsat Enhanced Thematic Mapper (ETMþ) scene,
while the BO-DRY area in Alaska and BO-MOIST area in
Minnesota were necessarily in separate scenes. Therefore, it was
necessary to correct for solar illumination angles and atmo-
spheric conditions, which differ between scenes. For consisten-
cy, the same correction techniques were applied to all scenes
(Table 1).

The authors developed code in ERDAS IMAGINE Spatial
Modeler Language (SML) to atmospherically correct images
using the cost-correction model developed by Chavez (24) with
dark object subtraction, converting digital numbers into at-
sensor reflectance and minimizing atmospheric effects. An
adaptive image model, based on the method proposed by

Steinnocher (25), was written by the authors using SML, which
fused the six 30 m reflectance bands with the 15 m panchromatic
band and thus enhanced edges without significantly changing
spectral values. All images were converted to their correspond-
ing UTM zone and the NAD83 projection. We found the
enhanced spatial accuracy of the National Landsat Archive
Production System (NLAPS)–processed Landsat imagery that
we used greatly minimized image registration error. Finally, the
full scenes were subset to an ;45 000 ha area surrounding the
field transect locations.

In the tropical landscapes, we utilized a 15 m fused Landsat
ETMþ ‘‘cloud-free’’ mosaic that was recently produced for the
entirety of Puerto Rico (26). While phenological variation is
slight in the tropical landscapes, due attention was given to
selecting scenes for the mosaic from approximately the same
season (Table 1). Unfortunately, cloud-free imagery could not
be found for some mountainous localities, so cloud and cloud
shadow masks were applied to give the appearance of a cloud-
free mosaic. These images for both the TR-DRY and TR-
MOIST areas were converted from radiance to reflectance
values. They then were fused with the panchromatic band to
obtain the enhanced resolution of 15 m, as in the boreal and

Table 1. Study area description and corresponding ETMþ imagery used.

No.
Study
area

Population
density

(no. km�2)*

Road
length
(km)†

Mean
annual

precipitation
(mm)‡

No. of
transects

used to train
classification

Path/Row
of ETMþ

scene
Acquisition

date

1 BO-DRY 4.6 236.9 339 14 P69/R15 27 May 2002
2 BO-MOIST 7.5 521.3 700 18 P28/P27 15 July 2002
4 TE-DRY 6.8 525.4 442 18 P43/R27 24 July 2002
3 TE-MOIST 4.7 380.5 731 11 P43/R27 24 July 2002
5 TR-DRY 228.5 1097.0 995 44 P05/R48 13 November 2000
6 TR-MOIST 340.8 1397.3 1617 17 P05/R47 05 March 2001§

P05/R47 22 January 2003

* Population densities were calculated for each study area from the 2000 TIGER census data (per county/municipality) (http://www.census.gov; accessed 23 June 2007). † Road length was
calculated for each study area using the second edition of the TIGER/LINE 2006 data (released 06 March 2007) (http://www.census.gov/geo/www/tiger; accessed 03 September 2007).
‡ Precipitation was calculated for each study area from PRISM data layers (30 y average) (http://prism.oregonstate.edu; accessed 18-10-2006). § Cloud-masked image ‘‘on top’’ of the other
image.

Figure 2. Illustration of a field transect.
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temperate areas. See Martinuzzi et al. (26) for the complete
image-processing procedures used to produce the Puerto Rico
‘‘cloud-free’’ mosaic.

eCognition

For each study site, the six 15 m fused ETMþ reflectance bands
were passed to the eCognition multiresolution image segmen-
tation algorithm to delineate the spatial data into polygons with
similar spectral values. The algorithm assembles spectrally
similar and spatially adjacent pixels into image objects, or in
other words, combines pixels that minimize pixel variability
within groups and maximize pixel variability between groups
(17). The parameters used to employ the algorithm were taken
from a companion study (27) and were set with a 0.2 shape
parameter and a 20 form factor, with all other parameters left as
the defaults (18).

Figure 3 shows the box plots of the image object sizes. The
mean object image sizes are between 4.3 ha (TR-DRY) and 9.4
ha (TE-DRY), which are realistic sizes for forested landscape
elements. For example, Gustafson and Crow (28) reported an
average forest stand size of 9 ha, and Siegert and McCullough
(29) report areas between 1.2 and 22.8 ha of pine stands in the
Midwestern US. The large image objects shown in Figure 3 are
indicative of homogeneous closed forest canopy. We assumed
that the image objects generated by eCognition represented

landscape units that were indicative of forest pattern at the time
of the image acquisition.

Classification

The six reflectance bands were reduced into three using the
tasseled cap transformation (30) to eliminate redundant spectral
information and improve classification accuracy (see also Fig. 4
for explanation). After applying the tasseled cap transforma-
tion, the images were classified using the supervised maximum
likelihood method in ERDAS IMAGINE. Pixels corresponding
to the forested plot locations 15 m, 35 m, and 55 m inside the
forest edge were used to train the forest class, while pixels from
the nonforested plots 5 m outside the forest edge were used to
train the nonforest class. The edge plot pixels 5 m inside the
forest edge were excluded because they could occur in the same
15 m pixel as the nonforest plots, and we wanted to define the
forested class more conservatively because only the forested
class would be subsequently analyzed. In addition, an urban/
bare ground class and a water class were added to the
supervised classification where obviously present, and in the
case of the TR-MOIST and TR-DRY study areas, the cloud
and cloud shadows were set to ‘‘no data.’’ After classification,
the categories were reclassified as forest, nonforest (including
agricultural and urban areas), water, and ‘‘no data’’ (clouds and
cloud-shadows in the TR-DRY and TR-MOIST area). Next,
the reclassified image was overlaid with the eCognition
delineated image object polygon layer to classify polygons
according to the majority (mode) of the classified pixels
occurring within each polygon (Fig. 5). In other words, if the
majority of pixels within a delineated polygon were classified as
forest, then the whole polygon was classified as forest, and if the
majority of pixels were classified as nonforest, then the whole
polygon was classified as nonforest.

Landscape Metrics and Analyses

FRAGSTATS calculates metrics at three different hierarchical
levels: landscape, class, and patch (19). The landscape level
includes all of the patches within a defined landscape and was
used here to characterize the study areas as a whole. The class
level metrics mainly involve differences between classes; since
the focus of this study was only on the forested class, no class
metrics were evaluated. The patch-level metrics were calculated
on the individual patches within each class, in this case, just the
forested class, providing a distribution of values for these
metrics that could be statistically compared among study areas.

We selected several landscape-level metrics: total area (TA)
of land (excluding water, clouds, or cloud shadows), forested

Figure 3. Box plots of the forested eCognition image object sizes per
study area.

Figure 4. Illustration of an image segmentation and classification. (a) Subset of the TE-MOIST Landsat ETMþ image. (b) Landsat ETMþ image
with delineated polygon layer. (c) Tasseled cap transformed image with delineated polygon layer. (d) Pixel-based maximum likelihood
classified image. (e) Classified image according to the majority of the forested pixels inside each polygon.
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area (FA), percentage forested (PFOR), number of patches
(NP), patch density (PD), total edge (TE), and relative edge
length (REL) (Table 2). These metrics were chosen because they
have little redundancy among them yet have intuitive ecological
meaning. The four patch-level metrics included: mean patch
area (MPA), perimeter area ratio (PAR), proximity index
(PROX), and core area of the forested patches (CORE). The
distributions of the patch-level metrics (dependent variables)
were analyzed using a one-way analysis of variance (ANOVA)
with the nonparametric Kruskal-Wallis chi-square test (31),
which indicates significant differences between the means of the
patch-level metrics by study area (grouping variable). In
addition, the Spearman’s rank correlation coefficient (q) was
calculated between some of the landscape-level metrics and the
population density and the road length (n ¼ 6) per study area
(Table 1). R software was used for all statistical analyses (32).

The landscape-level and class-level metrics were calculated
with FRAGSTATS based on effective areas, i.e., ;45 000 ha
less those areas classified as water (all six study areas), or as ‘‘no
data’’ due to cloud or cloud shadow masks (TR-DRY and TR-
MOIST areas). FRAGSTATS was instructed to ignore the
outer edge of the study area, and polygons adjacent to the water
class or to the ‘‘no data’’ masks in order to prevent these factors
from confounding the analysis. This is because the study area
boundaries and the position of the cloud or cloud shadow
masks have little relationship to features on the ground, yet they
can alter the size and shape of adjacent polygons in the imagery
and, consequently, any calculated metrics. Although water is a
real landscape feature, its effect on adjacent polygon charac-
teristics is not a function of human-induced changes, as are the
urban or agricultural areas of land-use conversion of primary

interest. In summary, only those forested polygons not touching
the study area boundaries, water features, or ‘‘no data’’ masks
were included in the results.

RESULTS

Landscape-Level Metrics

The percentage forested (PFOR) was highest in the boreal
region, lowest in the tropical region, and intermediate in the
temperate region (Table 3). PFOR was significantly negatively
correlated with road length (q ¼�0.89, p ¼ 0.03), and PFOR
showed a negative but insignificant tendency toward population
density (q ¼�0.77, p ¼ 0.10). There were differences in PFOR
between the dry and moist landscapes in the temperate and
tropical regions; lower PFOR was found in the dry landscapes.
However the difference in PFOR between the BO-DRY and
BO-MOIST areas was only slight.

The number of patches (NP) was highest in the TR-DRY
area and lowest in the BO-MOIST area. The NP was large in
the tropical areas, and, along with a lower PFOR, it suggests a
higher degree of fragmentation relative to the nontropical study
areas (Table 3). Neither NP nor patch density (PD) was
significantly correlated with population density (q ¼ 0.43, p ¼
0.42 and q¼ 0.43, p¼ 0.42 for NP and PD, respectively) or road
length (q¼ 0.54, p¼ 0.30 and q¼ 0.54, p¼ 0.30 for NP and PD,
respectively). When considering the PFOR and NP results
together, it is apparent that the dry areas across all climatic
regions have more patches compared to their moist study area
counterparts in the same region. This is also apparent in the
patch density metric (PD), which shows the same pattern:
higher for the dry areas, lower for the moist areas.

Figure 5. Six maps of the classified
study areas. (a): BO-DRY, (b) BO-
MOIST, (c) TE-DRY, (d) TE-MOIST,
(e) TR-DRY, ( f ) TR-MOIST. (The
frame in map d shows the extent
of Figure 4.)
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Total edge (TE) represents a measure for the actual forest–
nonforest edge length (excluding the study area border, water,
and ‘‘no data’’ edges), while the relative edge length (REL) is
more informative when comparing the different study land-
scapes because it is corrected for the forested fraction. We found
that the REL is higher in the drier landscapes of the temperate
and the tropical regions but lower in the drier landscape of the
boreal region (Table 3). The TE length had no apparent
relationship with population density (q¼ 0.09, p¼ 0.92) or road
length (q¼�0.03, p¼ 1.0), whereas the REL showed a positive
yet insignificant tendency toward population density (q¼ 0.71,
p ¼ 0.14) and road length (q ¼ 0.83, p ¼ 0.06).

Patch-Level Metrics

Three patch-level metrics, the mean patch area (MPA), the
perimeter area ratio (PAR), and the proximity index (PROX),
show highly significant (p , 0.001) differences between study
areas, while the CORE patch-level metric was insignificant (p¼
0.095) (Table 3). The MPA is higher for the moist areas
compared to their corresponding dry areas in the same climatic
zone. In addition, the MPA is higher in the boreal region than
in the temperate region, which in turn is higher than in the
tropical region. The shape index (PAR) shows that shape
complexity is highest in the two boreal areas and lowest in the

TE-DRY area. The proximity index (PROX) shows similar
trends as the MPA, with primarily lower values for drier areas,
and an increasing trend with increasing latitude. There were no
significant differences between the core areas (CORE). While
the mean values show a similar pattern as the MPA, there is
great variability within the study sites and therefore no
significant difference in the CORE metric.

DISCUSSION

It was difficult to detect significant trends in the landscape-level
metrics based on only six study areas. On the other hand, it was
easy to detect significant trends in the patch-level metrics,
because hundreds of patches were generated per study area.
Thus, we interpret the slightly insignificant results in the
landscape-level metrics to have potential ecological significance
that may merit further study, such as the negative but
insignificant (p . 0.05) relationship we found between PFOR
and population density.

Our image analysis approach was repeated in identical
fashion over each landscape, allowing us to characterize the
extent and nature of forest fragments, as represented by
consistently derived image objects, between the selected study
areas. We caution that the image objects generated by
eCognition represent landscape units at the point in time the
Landsat image was acquired and may not accurately indicate
the true nature of the fragmentation process that has been
ongoing for decades. We further caution that our six selected
study areas may not represent the average degree of forest
fragmentation across the dry and moist tropical, temperate, and
boreal forest types. These two cautions concern a temporal and
spatial scope of inference that was well beyond our ability to
address. However, we do believe our analysis approach has
merit as a means to objectively and consistently characterize
fragmented forest landscapes.

Our results support the idea that high road density and
human population density is correlated with greater forest
fragmentation. For example, in Puerto Rico, where human
pressure is greatest among our study areas, forest fragmentation
indices show smaller mean patch area, higher patch density, and
less core area (Table 3). Severe tropical forest destruction has
been widely documented (33, 34), particularly in dry tropical
forests (23, 35). On the other hand, the results suggest the
picture is more complicated than might be attributed to human
population pressure alone. Indicators of fragmentation were
found to be greater in the dry environments compared to the
moist environments along the climatic gradient. The number of
patches and patch density were greater in the dry study areas

Table 2. Description of the FRAGSTATS metrics employed.

Metric
Formula
(units) Description

PFOR FA
TA (%) Percentage forested

NP (unitless) Number of forested patches

PD NP
TA (ha�1) Density of forested patches (number per

100 ha)

TE
XNP

1

e (km) Total edge length of the forested
patches

REL TE
PFOR (unitless) Relative edge length; the total edge

length corrected for the fraction of the
total forested area

MPS (ha) Mean patch size of the forested patches

PAR p
a (unitless) Perimeter area ratio of the forested

patches
CORE (ha) Core area of the forested patches

(search radius ¼ 100 m)

PROX
XNP

1

a

h
(unitless) Proximity index of the forested patches

with specified neighborhood of 100 m

FA¼ total forested area; TA¼ total area (excluding background); e¼edge length of patch;
p ¼ perimeter of patch; a ¼ area of patch; h ¼ distance between two patches based on
edge-to-edge distance.

Table 3. Results of the landscape-level metrics (A) and the means and standard errors of the patch-level metrics, the Kruskal-Wallis chi-square
test results, and their significance values (B) per study area.

BO-DRY BO-MOIST TE-DRY TE-MOIST TR-DRY TR-MOIST
Chi-squared

(d.f. ¼ 5) p value

A. Landscape-level metrics

TA (ha) 44 504 38 178 43 837 44 347 41 033 34 077
FA (ha) 30 583 29 093 23 959 28 421 16 689 22 569
PFOR (%) 67.9 64.5 53.2 63.1 37.0 50.1
NP 133 62 129 116 342 172
PD 0.30 0.14 0.29 0.26 0.76 0.38
TE (km) 1445 1753 1630 1615 1719 1365
REL 47.3 60.2 68.0 56.8 103.0 60.5

B. Patch-level metrics

MPA 230.0 (159.6) 469.2 (320.1) 185.7 (149.8) 245.0 (215.6) 48.8 (20.7) 131.2 (105.0) 65.136 ,0.001
PAR 425.9 (19.7) 425.9 (40.7) 293.5 (14.6) 393.2 (19.9) 395.1 (10.4) 418.0 (29.4) 38.910 ,0.001
PROX 28 678 (5,142) 57 920 (1,0163) 11 102 (3,550) 34 336 (6116) 4005 (599) 24 016 (3550) 39.198 ,0.001
CORE 594.3 (438.5) 647.9 (434.5) 216.3 (198.2) 508.2 (481.8) 99.3 (49.0) 224.1 (191.8) 9.381 0.095
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compared to the moist study areas in the same climatic region,
while the percentage forested area and the mean patch area were
smaller. However, forest canopy structure is also naturally more
open in drier forest types, which is likely confounding these
results aimed at isolating the human forces of fragmentation.

The increased influence of historic fires on drier forested
ecosystems also may be contributing to fragmentation. This is a
difficult factor to tease apart, as ignitions may be caused by
lightning or by humans. The former cause is much more likely
in Alaska, while in Puerto Rico, fires were virtually nonexistent
prior to human settlement (23, 36). Introductions of exotic
African grasses are causing the development of cyclic fires in the
seasonally dry forest of the TR-DRY area, which may also be
contributing to greater fragmentation. Our results support other
studies (23, 35) that have shown the dry tropical forest
ecosystem is particularly fragmented and threatened or endan-
gered. Restoration of less-fragmented dry forest ecosystems
may be hindered by the persistence of frequent fires in the grass
sward encroaching upon forest edges, often along roads where
human ignitions are more likely.

The methods presented in this study represent a way to
characterize fragmented forest landscapes across different forest
ecosystems using a consistent image data source, processing,
and analysis approach. Others have demonstrated the limita-
tions of purely pixel-based image analysis approaches (14, 37).
Classification of image pixels often results in a ‘‘salt and
pepper’’ effect because many pixels are below the minimum
mapping unit (MMU) size of interest and which would inflate
the number of patches, increase edge length, and have otherwise
undesirable consequences on the patch metrics (38). The ‘‘salt
and pepper’’ effect is often removed by passing moving windows
(such as pixel median or majority filters) over the classified
image (39) or establishment of an MMU (40). By first
segmenting and thereafter classifying the images, we could
avoid the problems caused by single-pixel classification units.

Despite eCognition’s capability to delineated discrete units
representing landscape pattern, more research is necessary to
determine how the procedure works for different types of
imagery on different types of edges. Remote-sensing imagery
with higher spatial resolution (27) or multidate image delinea-
tion (14, 41) has the ability to more precisely locate an edge in
the field. Further research could focus on the detectability of
different types of edges and their relationships to different
processes, such as fragmentation.

Besides comparing study areas, landscape metrics can be
used to parameterize models and perform risk assessment over
larger landscapes. For instance, wildland fire prevention has to
deal with the increased complexity of the urban-wildland
interface (42; 2007 Caribbean Fire Ecology and Management
Symposium outcome). The total edge (TE) calculated exempli-
fies a metric that could be used as an index of the amount of
urban-wildland interface and perhaps as a measure of fire risk.
Often these borders are sensitive locations for forested
ecosystems that are vulnerable to invasive species and anthro-
pogenic disturbance. The metrics employed in this study could
improve our understanding of the dynamic wildland-urban
interface (WUI) across fragmented landscapes.

CONCLUSION

As might be expected, landscapes with higher population and
road density are more fragmented. In addition, our results
indicate that landscapes in drier climate have a higher degree of
fragmentation as compared to their moister counterparts in the
same climatic region. Drier climates produce more dispersed
vegetation that can appear more fragmented as characterized by
our analysis techniques. Separating the competing influences of
land use and climate on the patch characteristics of forest

fragments is an issue for future research. We encourage further
testing of our remote-sensing, image segmentation, and patch
analysis methods in other forested landscapes spanning a
human population density gradient, or a moisture gradient,
within boreal, temperate, or tropical forest types.
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