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Abstract 

 

We describe and assess several methods for scheduling fuel management treatments to 

achieve timber harvest and landscape pattern goals across space and time.  Four landscape 

patterns of management activities are modeled (dispersed, clumped, random, and regular).  The 

intent is to examine the effects of spatial and temporal placement of fuel management activities 

on resulting wildfire behavior. The timber harvest goal is a common one related to the 

management of public land in the intermountain U.S., to achieve and maintain a high level of 

even harvest volumes.  We describe forest planning scheduling processes that provide schedules 

of activities across both space and time, with the hypotheses that (a) fire effects may be 

minimized by scheduling activities in a pattern across the landscape, and (b) harvest levels will 

not be significantly affected by scheduling activities in a pattern across the landscape.  Results 

indicate that while spatial patterns cannot be statistically validated, due to the multi-objective 

nature of the planning problem, usual examination does suggest the patterns are being designed. 

In addition, fire behavior, as compared to a control simulation with no scheduled activity, is not 

minimized by scheduling activities in specific spatial patterns. Two reasons for this result emerge: 

(1) that the prescriptions used, which were designed to promote the development of forest 

structure within a desired range of stand density, are not appropriate for contributing to the 

control of wildfire, and (2) increased harvest levels obscure the pattern of activity, making the 

impact of the pattern less clear even though harvest levels are not significantly influenced by 

scheduling them in a pattern across the landscape. 
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Introduction 

 

 Western forests in the U.S. have been threatened with high risk of catastrophic wildfires 

during the last few decades. To reduce a number of undesirable consequences of catastrophic 

wildfires (i.e., cost of suppression, size of fires, ecological damage, threats to developed areas, 

etc.), fuel management treatments have been extensively applied to this region. Individual fuel 

management activities might be expected to affect fire behavior on a very local scale (Helms, 

1979; Martin and other, 1989; Agee, 1998), but alone, may have limited influence on the overall 

behavior of wildfires at large landscape-scale. However, it would be virtually impossible to treat 

entire forestlands in this region, so management activities need to be scaled and arranged in ways 

that are surmised to effectively disrupt the progress of wildfires. Therefore, it is important to 

understand the cumulative effects of individual fuel management treatments and their spatial and 

temporal pattern of implementation that may affect fire behaviors.  

 Because of the difficulty of conducting experimental work at a large scale, and because 

of the unpredictability of wildfire, previous research regarding to the spatial arrangement of fuel 

management activities and their effects on wildfire has been mostly theoretical. However, 

observations of forest fuel patterns in California (van Wagtendonk, 1995; Parsons and van 

Wagtendonk, 1996) supported the idea that spatial fragmentation of forests (creating stands of 

various fuel conditions) can affect wildfire size and behavior. Since isolated attempts in managing 

forest stands were revealed to have no effect at all on the progress of a fire burning across a large 

landscape (Dunn, 1989), it seems important to understand how individual fuel management 

activities aggregate to larger scales, and thus affect the behavior of wildfire, and to understand the 

appropriate amount of treatments needed to efficiently disturb the growth of wildfires. However, 

little is known about the cumulative effect of treatments that are spatially and temporally 

allocated across large areas. 
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 Several basic spatial patterns of management activities have been examined on a smaller 

scale for their usefulness in controlling wildfire based on the amount of overlap between 

management activities. For example, the random pattern (Finney, 2003) of fuel management 

activities places no emphasis on overlap, and thereby reduces spread rate of fires in a sigmoid 

fashion, inferring that relatively large areas of a landscape must be treated with fuel management 

activities to substantially reduce fire sizes. Parallel strips of management activities (Fujioka, 

1985; Martin, 1988; Catchpole et al., 1989) accommodate complete overlap in one direction. This 

is one of the most efficient patterns for reducing the spread rates of wildfires with a small amount 

of treatments necessary. One disadvantage of using parallel strips is that one assumes, 

unrealistically, that wildfires always move in a direction perpendicular to the strips.  Regular 

patterns of dispersed fuel management activities (Finney, 2001) provide partial overlap, and can 

reduce wildfire spread rate. These may be more flexible to implement, as well as to accommodate 

other spatial management constraints (i.e., adjacency and green-up rules) because the activities 

are not connected. 

 Several landscape simulation models have been used for modeling wildfire and forest 

management activities (Keane et al., 1997; Jones and Chew, 1999; Mladenoff and He, 1999). 

Some of these models have been proposed for modeling the effects of fuel management activities 

as well as for optimizing the scheduling of activities with economic objectives.  None of the 

models, however, account for the topological effects of fuel management patterns with respect to 

landscape-level wildfire behavior. For optimization of fuel management in a topological manner 

across time and space at the stand level as well as the landscape level, a model is required to 

recognize spatial relationships, and to accommodate tracking the fine-scale conditions of forest 

stands. Therefore, the use of integer decision variables and heuristic or simulation models are 

recommended rather than linear programming models, given the non-linear nature of the problem. 

 The overall objective of this study is to understand how spatial patterns of fuel 

management activities influences wildfire behavior. In this paper, we primarily describe and 
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assess methodologies for arranging fuel management activities in desired patterns across space 

and time, using a heuristic scheduling process. Also, we examine the effects of optimized spatial 

patterns of fuel managements on wildfire behavior when applied to a larger watershed in eastern 

Oregon (USA). 

 

 

Methods 

 

Study Site and Data Preparation 

 

 In previously reported preliminary research (Kim and Bettinger, in press), scheduling 

methodologies for spatial arrangements of management activities were tested in private lands 

located within the Upper Grand Ronde River basin in northeastern Oregon. Most of this area is 

surrounded by U. S. Forest Service land (Wallowa-Whitman National Forest). In this expanded 

research, the same methodologies were applied to a larger watershed, the entire region of the 

Upper Grand Ronde River basin (approximately 178,000 hectare, Figure 1). 

GIS databases representing the current forest structure of the watershed were downloaded 

from the website of the INLAS project (http://www.fs.fed.us/pnw/lagrande/inlas/index.htm). 

When scheduling activities across the landscape, centroids of management units are used as a 

proxy for their locations. Thus, by using ArcView software and its extensions, centroids of 

management units were generated and their x, y coordinates were generated. In addition, 

scheduling of fuel management activities requires attribute data accompanied with GIS databases 

that describes the specific vegetation structure of each management unit. Thus, all required 

attribute data were exported in ASCII format, and then made feasible for the various scheduling 

procedures described in following chapters.  
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In Bettinger et al. (in review), 10 stand-level optimal prescriptions were developed, each 

with the goal of maintaining desired stand density targets for each stand, while being limited by 

operational constraints. Changes in stand structure over 10 ten-year periods (100 years) were 

simulated. These 10 prescriptions and their associated data were adapted to this research. 

Bettinger et al. (in review) examine a simple economic goal – maximize even-flow of timber 

harvests – and how changes in heuristic processes affect the efficiency of forest plans. They do 

not model either wildfire behavior, or spatial patterns of activities. 

 

Scheduling of Spatial Patterns of Fuel Management Activities 

 

 Four spatial patterns of fuel management activities were examined in this research, which 

includes three basic landscape patterns (dispersed pattern, clustered pattern, and random pattern) 

and an artificial pattern (regular pattern). These spatial patterns of fuel management activities 

were scheduled with a heuristic modeling technique: the Great Deluge Algorithm (GDA) which 

was introduced by Deuck (1993) and applied to forest planning problems in Bettinger et al. 

(2002), and Kim and Bettinger (in press).  

The amount of fuel management treatment might be important in altering fire behavior. If 

the treatment amount is too small, there may be little management effect because fires might burn 

with little contact to treated management units. Therefore, two levels of target volume of timber 

harvests – high and low – were applied in the scheduling process to examine the variance of 

effects according to treatment amount. In Bettinger et al. (in review), a maximum even-flow 

harvest volume (200,716 MBF per decade) was optimized through linear programming with 

simplifying management assumptions, where no spatial constraints were considered and integer 

variables were not used to represent choices assigned to management units. Since a spatial 

constraint is considered in our research, the two target even-flow volumes were selected from 
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values less than the theoretical maximum: a high volume target (100,000 MBF) and a low target 

volume (10,000 MBF). 

For the low target volume, scheduling procedures were repeated 30 times for each pattern 

to find the best solution that spatially optimizes a desired pattern across landscape and achieve the 

even-flow volume. However, for the high target volume, scheduling procedures were repeated 

only 10 times due to time constraints. Each repetition started with a random schedule of 

management activities to make the resulting solutions independent. For quantifying the effects of 

solutions more accurately, a control solution with no management activities scheduled was also 

generated.  

 

Dispersed Pattern of Fuel Management Activities 

 In a dispersed pattern, generally management units are widely spread across landscape 

with minimum clustering. Here, ideal dispersed patterns are assumed to maximize total distance 

between management units, and also minimize deviations between actual harvest volume and a 

harvest volume target. The following objective function was developed to generate a pattern as 

close to the ideal pattern:  
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Where:  

WH : Weight corresponding to the even harvest to the target 

WD : Weight corresponding to the dispersion (WH + WD = 1) 

Hik : Harvest volume from unit i in time period k (i = 1, 2, …, Nk, k = 1, 2, …, P) 
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T : Target volume of timber harvesting 

D ij : Distance between centroids of unit i and j (i = 1, 2, …, Nk-1, j = 2, 3, …, Nk) 

i, j : Index of management units scheduled for harvest 

k : Index of management periods  

P : Total number of time periods (P = 10) 

Nk : The set of management units scheduled for harvest in time period k 

 

A scheduling procedure based on the above function seeks a solution that minimizes the 

difference between actual harvest volume and a harvest volume target, and maximizes the total 

distance between centroids of management units scheduled for harvest. The basic implementation 

of GDA seeks a solution with a higher peak (higher objective function value) as water-levels 

(threshold value) increase, to produce a solution which is expected to have highest peak 

(maximum objective function value). Since the optimized solution in this research was expected 

to have the minimum objective function value, the algorithm was modified to seek a solution with 

a lower bottom (lower objective function value) as water is discharged (Figure 2). Three stopping 

criteria were used in the modified version of GDA: total iterations, non-improved iterations, and 

water-level. Parameters associated with these stopping criteria are provided in Table 1. 

Objective function values might obviously vary when assigning weights for each portion 

of the function, so nine weight combinations (0.9, 0.8, 0.7, … , and 0.1) were tested to determine 

the most appropriate weights for both patterning and even flow objective. From these test trials, 

two weight values (WH = 0.4 and WD = 0.6) were chosen for further processing. The choice of 

weights was made by evaluating the point where dramatic differences in the objective values 

occurred (i.e., the threshold where a change in weights caused dramatic declines in the objective 

function value).  

The scheduling process for the high level of target volume consumes much more 

modeling time than that for the low level of target volume. Although weighting each portion of 
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the objection function provided better solutions in case of the low target volume, tremendous time 

would be required to test the variety of weight combinations for the high target volume. Therefore, 

the same weights (WH = 0.4 and WD = 0.6) were used for both the high and low target volumes. 

Moreover, in order to accelerate the scheduling process for the high target volume, it was 

inevitable to adjust the value of parameters associated with stopping criteria. The adjusted 

parameters were also given in the Table 1. 

 

Clumped Pattern of Fuel Management Activities 

 A clumped pattern is assumed to be a pattern in which management units are clustered on 

landscape. Here, the ideal clumped pattern is assumed to minimize the total distance between 

management units and minimize the deviation between actual harvest volume and a harvest 

volume target. The clumped pattern is expected to minimize total distance between management 

units, while the dispersed pattern is expected to maximize it. Thus, equation 1 was modified to 

accept this distinction by adding the two portions of the objective function as follows: 
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The scheduling procedure now seeks a solution that minimizes the difference between 

actual harvest volume and harvest volume target and also minimizes the total distance between 

centroids of management units scheduled for harvest as well. The optimization of clumped 

pattern was conducted using the same scheduling process with that of dispersed pattern. However, 

some of the parameters related to the stopping criteria – initial water level and minimum water 

level – were altered based on trial runs of the scheduling model (Table 1). Nine weight 
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combinations were also tested for the scheduling process of the low target volume, and the most 

appropriate weight values (WH = 0.5 and WD = 0.5) were chosen and used for both the high and 

low volume targets. 

 

Random Pattern of Fuel Management Activities 

 A random pattern is a pattern in which management units are randomly allocated across 

landscape. Within the GDA scheduling process, management units are randomly chosen and 

random prescriptions are assigned to them, so solutions generated within this process are assumed 

to have random pattern across the landscape (although the pattern may be influenced by the 

distribution of vegetation types in the study area). Therefore, the scheduling of a random pattern 

has no concern with the dispersion of management units, and the only criterion for evaluating the 

acceptability of a solution is the deviation between actual harvest volume and the harvest volume 

target through the management periods. Thus, the latter portion of equations 1, which corresponds 

to the dispersion of management units, is not necessary in the objective function. A few of the 

GDA parameters have been adjusted based on the trial runs of the scheduling model (Table 1). 
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Regular Pattern of Fuel Management Activities 

 In general, a regular pattern would be defined as the optimum dispersed pattern, however, 

it would rarely be found in a natural landscape. In this research, a regular pattern was assumed to 

be an artificial pattern in which management units are systematically allocated across landscape 

with a constant spatial interval. Ideally, management units scheduled for treatment in the regular 
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pattern are expected to have same distance to four neighbor units (northern, southern, eastern, & 

western). The “interval”, therefore, could be defined as a desired distance between centroids of 

management units that produces an ideal regular pattern. To enable one to generate such pattern, 

a different approach was developed and utilized for dispersing management units. It is based on 

the following idea: 

• Select one initial unit 

• Acquire the x, y coordinate of centroid of the unit 

• Generate “systematic points” by adding or subtracting a given interval to x, y 

coordinate of the centroid (Figure 3) 

• Calculate distance between systematic points and centroids of all units 

• Find the nearest centroid for each systematic point 

• Check whether each systematic point is located within the boundary of the study site 

• Exclude systematic points located outside of the study site 

• Save the nearest unit of each systematic point 

• Generate a solution by assigning a feasible prescription to the saved units 

• Calculate the objective function value and evaluate the solution 

 

One of the issues related to the above idea is how to exclude systematic points located 

outside of the study site. In order to automate this procedure and to inspect whether a systematic 

point is out of study site, we needed to test whether a vector connecting a systematic point and its 

nearest unit centroid is intersected by any boundary vector surrounding the study site. That is to 

say, if a systematic point were located outside of the boundary, the vector connecting the 

systematic point and its nearest unit centroid should be intersected by at least one boundary 

vector (Figure 4). To inspect whether two vectors intersect, a two-step process introduced by 
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Loudon (1999) was used in the scheduling model: a quick rejection test and a straddle test. If both 

tests succeed, two vectors intersect and thereby, the systematic point is out of the study site. 

The quick rejection test is initiated by constructing a rectangle called bounding box that 

surrounds each vector. A vector between a systematic point and its nearest unit centroid has two 

end nodes, ( )111 , yxn =  and ( )222 , yxn = . The bounding box of the vector is a rectangle with 

lower left point ( ) ( )( )2121 ,min,,min yyxx  and upper right point ( ) ( )( )2121 ,max,,max yyxx . 

Also, a boundary vector has two end nodes, ( )333 , yxn =  and ( )444 , yxn = , and a bounding 

box with lower left point ( ) ( )( )4343 ,min,,min yyxx  and upper right point 

( )( )4343 ,max(),,max yyxx . If bounding boxes of the two vectors intersect, all of the following 

tests must be true (Figure 5): 

( ) ( )4321 ,min,max xxxx ≥   ( ) ( )sxxxx ,min,max 143 ≥  

( ) ( )4321 ,min,max yyyy ≥   ( ) ( )syyyy ,min,max 143 ≥  

A straddle test follows only when the quick rejection test succeeds. To examine whether a vector 

straddles another, the orientation of n3 relative to n2 is compared with that of n4 relative to n2. 

Orientation of n3 and n4 convey whether the nodes are clockwise or counterclockwise from n2 

with respect to n1. The orientation of n3 and n4 are determined by following equations: 

( ) ( ) ( ) ( )131212131 yyxxyyxxz −−−−−=  

( ) ( ) ( ) ( )141212142 yyxxyyxxz −−−−−=  

If the sign of z1 and z2 are different, or either one is 0, the vectors straddle each other, and the two 

vectors intersect. Figure 5 describes results of the quick rejection test and the straddle test based 

on four different cases.  

When developing a regular pattern, management units, unlikely to other patterns, are 

chosen prior to assigning prescriptions to the units. A feasible set of prescriptions for selected 

management units was assigned to them. As the result, the scheduling process just generated and 
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evaluated the limited number of solutions. In the preliminary research (Kim and Bettinger, in 

press), the Tabu Search (TS), a heuristic technique introduced by Glover (1989, 1990), was 

applied in the scheduling of regular pattern since it was expected to be more efficient than GDA 

in terms of scheduling time. However, TS was not much more time-efficient, although it 

produced a similarly efficient result (according to the objective function value). Moreover, using 

two different heuristic approaches would be achieved by quite amount of additional program 

coding. In this research, the GDA was used as a primary algorithm for all intended patterns, and 

thereby the scheduling process of a regular pattern was modified (Figure 6) from those of 

previous three patterns. 

As described above, management units would be chosen before prescriptions are assigned 

to them. Thus, assigning a prescription to management units has no influence on the dispersion of 

management units. This means that dispersion of management units is not an essential element in 

the objective function any longer. In addition, according to the given prescriptions, a unit 

scheduled for harvesting in the first time period might be scheduled to be harvested again in one 

of the following time periods. This means that a set of prescriptions assigned to management 

units for one time period could affect scheduling of other following time period. By this reason, a 

solution that guarantees a nearly perfect regular pattern in across time periods is rarely obtained. 

Therefore, the scheduling process seeks a solution that optimizes the harvest from selected 

management units in the first time period. Upon these matters, the objective function was 

modified as below: 
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Since a limited amount of information is available to specify the most efficient spatial 

interval between management units for reducing the fire damage, several intervals were tested. 

From the test trials, it was found that the amount of harvest volume is highly associated with the 

interval. Since the interval might affect not only the dispersion itself, but even-flow harvest as 

well, a set of various intervals (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 kilometer) were tested 

for choosing the most appropriate interval to achieve even-flow harvest of two target volumes, 

and 4.5 kilometers was selected as the most appropriate interval for the low target volume, and 

1.5 kilometers was selected for the high target volume.  

 

Point Pattern Analysis: Nearest Neighbor Distance 

 

In the preliminary research (Kim and Bettinger, in press), the scheduling model was 

adequate for optimizing the spatial pattern of management activities and achieving even-flow 

harvest of target volume. The scheduled patterns across the landscape were evaluated as adequate 

from visual assessment. However, since there is no statistical test, it was suspicious whether 

management activities have been scheduled in desired patterns. To provide confidence to the 

model, a reasonable criterion was requested with statistical test in assessing the scheduled 

patterns. Therefore, the nearest neighbor distance analysis, which is one of point pattern analysis 

techniques (Boots and Getis, 1988; Cressie, 1993) was applied to assess the patterns in this 

research. Within the analysis, the mean of nearest neighbor distance observed from scheduled 

management activities were compared to the following statistic, expected mean of nearest 

neighbor distance for a pattern with complete randomness: 

 

N
Ad 5.0exp =  [5] 
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Where:  

expd  : Expected mean distance of nearest neighbor for complete random pattern 

A : Area 

N : Number of scheduled management units 

 

The hypothesis of this analysis is that the pattern would be random if the observed mean of 

nearest neighbor distance was not significantly distinct from the expected mean of complete 

randomness. If the observed mean was significantly less than the expected mean, the pattern 

would be clustered; if it was significantly larger, the pattern would be dispersed. The significant 

of difference between observed and expected mean was tested by using a z-statistic: 
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Where:  

obsd̂  : Observed mean distance of nearest neighbor 

)ˆvar(d : Variance ( )20683.0 N
A×=  

 

 

Fire Growth Simulation 

 

To quantify changes in fire behavior resulted from fuel management activities and their 

dispersion, a fire growth simulation model, FARSITE (Finney, 1998), was primarily used. 

FARSITE is widely used by several federal governments and state land management agencies to 
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simulate the spread of wild fires. FARSITE requires spatial information on topography and fuels 

along with weather files as inputs, and such inputs should have grid file format. Thus, input files 

are generally prepared by using GIS software manually. To automate the data preparation, the 

scheduling model, originally developed in the preliminary research, was re-coded and combined 

itself with the original code of FARSITE. As the result, generating inputs associated with fuels 

and running FARSITE were available within the upgraded version of scheduling model.  

FARSITE supports several kinds of outputs describing a simulated fire and its behavior, 

including: fireline intensity, rate of spread, and flame length. In our analysis, average flame 

lengths and fireline intensity were primarily used for comparison of treatment effects. To 

compare the treatment effects according to the patterns, fires with 15 different ignition points 

were simulated after scheduling activities using each of the four patterns, and the resulted average 

flame length and average fireline intensity were recorded. The 15 ignition points were selected 

randomly and applied to every simulation of the four patterns.  

 

 

Results 

 

Spatial Pattern of Fuel Management Activities 

 

Management units that were scheduled for treatments in the first time period (decade) 

and contained in the best solution of each pattern were depicted as Figure 7 and 8. According to 

the figures, the distinction between the spatial patterns can be visually verified when the low 

target volume applied (Figure 7), while distinction between patterns is more vague when using 

the high target volume (Figure 8). Because the private land within the study site consisted of a 

large area of meadow, management units in the private land were hardly selected for treatment. 
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The lack of treatment within the private land would be the primary reason for degrading the 

visual distinction between patterns. 

Point pattern analysis based on nearest neighbor distance revealed a limitation of the 

scheduling model for patterning treatments. According to calculated statistics from the point 

pattern analysis, most of resulting patterns were not verified as desired patterns (Table 2). While 

the regular pattern was accepted for both the low and high target volume, the dispersed pattern 

was not accepted for either case. The objective function utilized in the scheduling dispersed 

pattern intends to increase the total distance between the treatments. Although this tendency 

enabled a dispersed pattern to consist of a large number of management units, the increase of 

management units could not provide an acceptable level of significance when using the nearest 

neighbor distance.  

 

Even Flow of Harvest Volume 

 

As shown in the Table 3, the best solutions from the four spatial patterns produced an 

acceptable even-flow harvest level. Harvest volumes of each spatial pattern are quite close to 

each target volume across the entire time horizon. However, the best solution for the dispersed 

pattern had much more variability of harvest volume, as compared to other patterns. The shortage 

of harvest volume in the second period is due to the prescriptions available to the scheduling 

procedure and the scheduling procedure itself. There are a limited number of feasible 

prescriptions to draw from when scheduling management activities in the second period. In 

optimizing the dispersed pattern, the scheduling model tends to increase the number of 

management units entered in the first time period, and thereby management units with less stand 

volume are available in subsequent time periods. 

 

Fire Simulation 
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The results of fire simulation were summarized in the Table 4. Most of spatial patterns 

reduced the fire sizes, but did not support sufficient evidence of treatment effect on fire behavior, 

as indicated by the severity of fires (i.e., flame length and fireline intensity). With the exception 

of the regular pattern applied to the low target volume, none of the patterns were able to reduce 

flame length or fireline intensity. Of course, severity of fire behavior was reduced within 

management units of treatments, but the overall severity of wildfires burning across a large 

landscape was not much affected by the treatments. 

There are several potential reasons that might have caused the lack of treatment effect on 

fire behavior. One could find a reason in the prescriptions of management activities. The 

prescriptions utilized in the scheduling procedure were aimed at controlling the stand density 

through mechanical thinning, but no consideration was given to managing ladder, crown, or 

surface fuels. These prescriptions might contribute to reduce ladder fuels or crown fuels, but 

would increase surface fuels. Therefore, additional prescriptions, in which surface fuels are 

effectively controlled, would be worth assessing. 

For investigating the influence of the amount of treatments on fire behavior, two levels of 

volume targets (10,000 MBF and 100,000 MBF) were utilized in optimizing even-flow harvest. 

The solutions optimized for the high volume target included much more management units (Table 

2) and almost five times the area (Table 5), as compared to those optimized for the low volume 

target. As described in the Table 5, treatments (even in the case of high volume target) occupied a 

small portion (< 7%) of the entire study region. This amount of treatments might not be enough to 

allow the spatial configurations of activities to disrupt the progress of wildfire. Further, if more 

efficient prescriptions of fuel treatment were applied, the result of fire simulation could be 

confounded. Therefore, future work will involve increasing the amount of treatment activity as 

well as explore other types of management prescriptions. 
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Discussion 

 

The scheduling model developed in this research provided approaches in which 

management activities were scheduled in spatial patterns across a large landscape. The solutions 

optimized through the scheduling process present variety of dispersion and treatment sizes, but 

also evenly distributed harvest volume. The scheduling model produced some meaningful results 

and provided an application of spatial modeling concepts to fuel management activities. However, 

there were several limitations found as well. First of all, we found through statistical analysis that 

the scheduling model attempts to allocate management activities in desired patterns but due to the 

nature of the problem (multi-objective with volume goals) the patterns are not necessarily 

achieved. This is mainly due to the number of activities needed to achieve the even-flow harvest 

target. However, visual examinations suggest that the patterns are being represented fairly well, 

even though not statistically validated.  

The prescriptions used in this research were aimed at controlling the stand density by 

utilizing mechanical thinnings. These were developed in conjunction with a larger landscape 

planning project and contained operational constraints. According to the fire simulation results, 

significant differences in fire behavior will rarely be achieved when using these prescriptions, if 

there is no specific control of ladder, crown, or surface fuels. Increasing the amount of treatments 

up to 7% of the entire study area each decade was not effective in altering fire behavior either. 

Therefore, it would seem important to adopt additional prescriptions in the scheduling process, 

those which have the intent of controlling the critical fuels. However, it is not clear how much 

treatment is enough to disrupt the progress of wildfire. In further studies, more attention to these 

remained issues will be paid. 
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Table 1 – Parameters associated with each scheduling process 

Parameters Dispersed 
Pattern 

Clumped 
Pattern 

Random 
Pattern 

Regular 
Pattern 

Low Target Volume  
 Total iterations 200,000 200,000 200,000 100,000
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Non-improved iterations 100,000 100,000 100,000 50,000
Initial water-level 5,000,000 10,000,000 5,000,000 5,000,000
Discharging speed 0.01 0.01 0.01 0.01

 

Minimum water-level -50,000 0 0 0
High Target Volume  

Total Iterations 150,000 150,000 150,000 150,000
Non-improved Iterations 80,000 80,000 80,000 80,000
Initial water-level 5,000,000 5,000,000 5,000,000 5,000,000
Discharging speed 0.001 0.001 0.001 0.001

 

Minimum water-level -100,000 0 0 0
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Table 2 – Results of point pattern analysis for scheduled patterns in the first time period 

Test Statistics Dispersed 
Pattern 

Clumped 
Pattern 

Random 
Pattern 

Regular 
Pattern 

Low Target Volume     
# of Units of Treatment 218 56 81 88 
Observed Mean (meter) 1417.75 2641.98 2552.81 3803.56 
Expected Mean (meter) 1430.04 2821.52 2346.04 2250.80 
z-statistic -0.2428 -0.9110 1.5176 12.3815 

 

Qualification Reject Reject Accept Accept 
High Target Volume     

# of Units 967 456 614 476 
Observed Mean (meter) 602.94 871.05 753.31 1150.15 
Expected Mean (meter) 678.99 988.77 852.11 967.77 
z-statistic -6.6639 -4.8641 -5.4965 7.8661 

 

Qualification Reject Accept Reject Accept 
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Table 3 – Harvest volume (MBF) of the best solution for each spatial pattern  

Management Period Dispersed 
Pattern 

Clumped 
Pattern 

Random 
Pattern 

Regular 
Pattern 

Low Target Volume     
Period 1 10,216 10,001 10,000 10,000 
Period 2 10,069 10,000 10,000 - 
Period 3   9,989   9,999 10,000 - 
Period 4 10,257 10,000 10,000 - 
Period 5 10,157 10,000 10,000 - 
Period 6 10,136 10,000 10,000 - 
Period 7 10,273 10,000 10,000 - 
Period 8   9,921 10,002 10,001 - 
Period 9 10,181 10,000 10,000 - 

 

Period 10 10,080 10,001 10,000 - 
High Target Volume     

Period 1 103,286 100,001 100,000 100,000 
Period 2   86,484 100,000 100,000 - 
Period 3   95,818 100,000 100,000 - 
Period 4 101,473 100,000 100,000 - 
Period 5 105,317 100,000 100,000 - 
Period 6 105,187 100,000 100,000 - 
Period 7 113,582 100,000 100,000 - 
Period 8 103,039 100,001 100,000 - 
Period 9 107,502 100,000 100,000 - 

 

Period 10   95,953   99,998 100,000 - 
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Table 4 – Fire simulation results: fifteen fires applied to each solution 

Fire Behavior Control Dispersed 
Pattern 

Clumped 
Pattern 

Random 
Pattern 

Regular 
Pattern 

Low Target Volume      

Flame Length (meter) 1.02 
- 

1.02  
(0) 

1.02  
(0) 

1.02  
(0) 

1.01 
(-0.01) 

Fireline Intensity (Btu/ft/s) 427.77 
 

429.53 
(+1.77) 

427.89 
(+0.12) 

428.48 
(+0.71) 

419.66 
(-8.10)  

Fire Size (ha) 19328 
- 

19312 
(-16) 

19328 
(0) 

19306 
(-22) 

20930 
(1602) 

High Target Volume      

Flame Length (meter) 1.02 
- 

1.03 
 (+0.01) 

1.02 
 (0) 

1.02 
 (0) 

1.03 
(+0.01) 

Fireline Intensity (Btu/ft/s) 427.77 
 

435.81 
(+8.04) 

430.04 
(+2.27) 

434.14 
(+6.37) 

434.82 
(+7.05)  

Fire Size (ha) 19328 
- 

18871 
(-457) 

19141 
(-187) 

19128 
(-200) 

18799 
(-529) 
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Table 5 – Treatment size (ha) of the best solution for each spatial pattern 

Management Period Dispersed 
Pattern 

Clumped 
Pattern 

Random 
Pattern 

Regular 
Pattern 

Low Target Volume     
Period 1   1,432 (0.8%)   548 (0.3%)   847 (0.5%) 1,156 (0.6%) 
Period 2   1,732 (1.0%)   894 (0.5%)   993 (0.6%)  
Period 3   1,785 (1.0%)   983 (0.6%)   994 (0.6%)  
Period 4   1,694 (0.9%)   785 (0.4%)   925 (0.5%)  
Period 5   1,860 (1.0%)   990 (0.6%) 1,082 (0.6%)  
Period 6   1,730 (1.0%)   792 (0.4%) 1,044 (0.6%)  
Period 7   1,577 (0.9%)   664 (0.4%)   687 (0.4%)  
Period 8   1,644 (0.9%)   666 (0.4%)   879 (0.5%)  
Period 9   1,638 (0.9%)   667 (0.4%)   764 (0.4%)  

Period 10   1,682 (0.9%)   616 (0.3%)   926 (0.5%)  

 

Average   1,677 (0.9%)   760 (0.4%)   914 (0.5%) 1,156 (0.6%) 
High Target Volume     

Period 1   7,170 (4.0%) 5,182 (2.9%) 6,110 (3.4%) 5,543 (3.1%) 
Period 2   8,502 (4.8%) 8,567 (4.8%) 9,634 (5.4%)  
Period 3   9,584 (5.4%) 8,128 (4.6%) 9,186 (5.2%)  
Period 4   9,874 (5.5%) 7,845 (4.4%) 8,732 (4.9%)  
Period 5 11,527 (6.5%) 9,073 (5.1%) 9,542 (5.4%)  
Period 6 10,431 (5.8%) 6,993 (3.9%) 8,419 (4.7%)  
Period 7 10,050 (5.6%) 7,190 (4.0%) 8,230 (4.6%)  
Period 8   9,813 (5.5%) 7,227 (4.1%) 8,591 (4.8%)  
Period 9   9,804 (5.5%) 7,502 (4.2%) 8,169 (4.6%)  

Period 10   9,062 (5.1%) 6,629 (3.7%) 7,806 (4.4%)  

 

Average   9,582 (5.4%) 7,434 (4.2%) 8,442 (4.7%) 5,543 (3.1%) 
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Figure 1. Study site: Upper Grand Ronde river basin in eastern Oregon. 
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Figure 2.  Flowchart of scheduling processes for dispersed, clumped, and random landscape 

pattern. 
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Figure 5. Examples of the quick rejection test and the straddle test for use in the generation of the 
regular landscape pattern. 
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Figure 6.  Flowchart of scheduling process for the regular pattern. 
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Figure 7. Spatial patterns of management units generated for the low target volume. 
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Figure 8. Spatial patterns of management units generated for the high target volume 
 


