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Abstract

To facilitate the identification of appropriate post-fire watershed treatments and minimize erosion effects after socio-economically

important fires, Interagency Burned Area Emergency Rehabilitation (BAER) teams produce initial timely estimates of the fire perimeter and

classifications of burn severity, forest mortality, and vegetation mortality. Accurate, cost-effective, and minimal time-consuming methods of

mapping fire are desirable to assist rehabilitation efforts immediately after containment of the fire. BAER teams often derive their products by

manually interpreting color infrared aerial photos and/or field analysis. Automated classification of multispectral satellite data are examined

to determine whether they can provide improved accuracy over manually digitized aerial photographs. In addition, pre-fire vegetation data

are incorporated to determine whether further gains in accuracy of mapped canopy consumption can be made. BAER team classifications

from the Cerro Grande Fire were compared to estimates of overstory consumption produced using a pre-fire vegetation classification, and a

change detection algorithm using bands 4 and 7 from July 1997 pre-fire Landsat Thematic Mapper (TM) and July 2000 post-fire Enhanced

Thematic Mapper (ETM) data. BAER team classifications are highly correlated to overstory consumption and should produce high Kappa

statistics when verified using the same dataset. Our three-class supervised classification of the change image incorporating a pre-fire

vegetation classification yielded the highest Kappa at 0.86. A three-class unsupervised classification of the change image yielded a lower

Kappa of 0.72. BAER team classifications yielded Kappas ranging from 0.38 to 0.63 using the same verification dataset.

D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction and background

Wildland fire is an ecologically important disturbance

factor in many ecosystems. While providing many benefits

in fire-adapted systems, catastrophic fire can cause severe

ecosystem and watershed damage. Catastrophic fires mod-

ify ecosystems by removing vegetative cover and altering

soil characteristics which increase the risk of severe ero-

sion and the time required for ecosystem recovery. With

increasing encroachment of human populations into wilder-

ness areas there is also an increased threat to private and

public infrastructure from wildfire effects. Not only are

natural view sheds and recreational areas at risk of dis-

appearing for decades or even centuries, but human lives,

property, and livelihoods are at risk.

Interagency Burned Area Emergency Rehabilitation

(BAER) teams are dispatched to potentially socio-econom-

ically significant fires in the USA to minimize post-fire

erosion effects (mitigation) and shorten ecosystem recovery

times (rehabilitation). Post-fire mitigation and rehabilitation

treatments can be immensely costly undertakings due to the

large areal extents of these fires and complex terrain in

which they occur. Often treatments must be completed

within weeks after containment of a fire due to the season-

ality of the fire season and impending rainy period or onset

of winter. Treatments therefore need to be targeted at

strategic locations to cost effectively reduce erosion risks

and they must be applied quickly. Not only are fire map

products produced by BAER teams used for short-term

rehabilitation and mitigation efforts, but they become part

of the fire record and form baseline data for long-term

recovery monitoring projects and future ecological studies.

Consequently, BAER-derived maps must accurately repre-

sent fire severity patterns.

On the most critical fires, BAER teams employ color

infrared aerial photography to map fire effects. Aerial
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photography has long been used by land management

agencies and is well understood by most managers.

Though the near-infrared wavelengths in color infrared

photographs are useful in mapping vegetation mortality

and soil moisture, it has been shown that mid-infrared

bands (band 5 = 1.55–1.75 Am and band 7 = 2.08–2.35

Am) of Landsat Thematic Mapper (TM) contribute new

information for classifying burn severity (White, Ryan,

Key, & Running, 1996). Both mid-infrared bands are

sensitive to moisture content of soil and vegetation. Mid-

infrared bands also penetrate thin clouds and smoke better

than visible bands, with band 7 to the greatest degree since

its wavelengths are larger than most water vapor and

smoke particles (Avery & Berlin, 1992). The advantages

of multispectral satellite data have not overcome the tradi-

tional use of color infrared photography because satellite

data have been expensive, over-flight schedules may be

untimely, and the data are perceived as complicated to use.

Although the 16-day over-flight schedule may limit chan-

ces of cloud-free scenes, as Landsat 5 remains in service

along with Landsat 7, the combined over-flight schedule is

8 days. Further, the cost of Landsat data has decreased

significantly. Terrain-corrected Landsat 5 is currently

US$650 and Landsat 7 is US$600. Maps produced from

aerial photography are assumed by some users to be more

accurate than those produced from satellite imagery

because the resolution of the photography is typically

greater than satellite imagery. The minimum mapping unit

of hand drawn polygons is however usually on the order of

20 ha, whereas Landsat data are about 0.6 ha.

A major reason why satellite imagery is perceived to be

difficult to use for mapping fire severity is that previous

studies have implemented many different techniques to

derive features used in classification schemes that may or

may not improve results (e.g., band ratios, linear transforms,

vegetation indices) without presenting any error analysis,

making a choice of the best technique difficult. Turner,

Hargrove, Gardner, and Romme (1994) mapped burn

severity in Yellowstone National Park using all seven bands

of single date Landsat TM data to examine burn severity in

relationship to disturbance history. No error analysis was

performed, but they determined their map agreed well with

existing maps by visual inspection and it passed inspection

of local experts. While examining whether satellite data

could detect fire severity and vegetation recovery, White et

al. (1996) compared several classifications of different band

combinations, band ratios, and modified band data. They

found a single date classification of band 7 yielded the best

results with an overall accuracy of 0.63. No details of the

comparisons were given. Single date and multitemporal

Kauth–Thomas transforms were found to produce more

accurate maps (Kappa = 0.73 and 0.66) of vegetation mortal-

ity due to fire than principal components analysis (PCA)

when resulting error matrices were compared (Patterson &

Yool, 1998; Rogan & Yool, 2001). Clark (2000) compared

difference images of pre- and post-fire images enhanced by

PCA, Kauth–Thomas transform (Kauth & Thomas, 1976),

Normalized Difference Vegetation Index (NDVI),

ðBand4� Band3Þ
ðBand4þ Band3Þ ð1Þ

Modified Soil Adjusted Index (MSAVI) (Qi, Chehbouni,

Huete, Kerr, & Sorooshian, 1994),

ðBand4� Band3Þ
ðBand4þ Band3þ LÞ ð1þ LÞ ð2Þ

a band 7/band 4 ratio, and a simple differencing of band 4.

Differencing the band 7/band 4 ratios was found to produce

the best representation of fire severity based upon visual

inspection and field knowledge. Key and Benson (1999b)

coined a new index, the normalized burn ratio (NBR),

formulated like the NDVI except using TM band 7 in place

of the red band as follows:

ðBand4� Band7Þ
ðBand4þ Band7Þ ð3Þ

They determined that the NBR difference performed best

compared with a post-fire band 7, pre- and post-fire differ-

ence of band 7, and a pre- and post-fire NDVI difference.

Fire effects have been defined in terms of severity and

intensity. These factors determine how well plants survive

during fire or reproduce after a fire. It is apparent that there

is no single, standardized classification system for quantify-

ing wildland fire effects. Most likely, some ambiguity arises

from different definitions. The BAER team (2000) defines

fire severity based on soil characteristics, which are con-

trolled by the temperature and amount of duff and surface

fuels consumed. Fire intensity, as defined by the BAER

team, is controlled by temperature, flame length, heat of

combustion, and total amount and size of fuel consumed,

transferring convective heat into the overstory. Chappell and

Agee (1996) define fire severity as a percentage of tree basal

area mortality. Some researchers define a combination of

soil and overstory effects as fire severity (Ryan & Noste,

1985; Turner et al., 1994), while others call this burn

severity (BAER, 2000; Key & Benson, 1999b). This dis-

crepancy of terminology makes comparing map products

potentially ambiguous. However, most researchers agree

that fire severity is a measure of the amount of soil organic

matter lost due to burning, decrease in surface cover, and

volatilization or transformation of soil components to solu-

ble mineral forms (Wells & Campbell, 1979). Severity is

generally measured post-fire by examining the depth of

char. Vegetation is usually able to regenerate in lightly

charred soils but not deeply charred soils (Ryan & Noste,

1985). Fire intensity is generally defined as a measure of

flame length and temperature conveyed into the overstory

(Ryan & Noste, 1985). Flame length is difficult to measure

during a fire but can be estimated post-fire from observed

crown scorch. While fire intensity and fire severity can be

correlated in most cases, in some forest types under some
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weather conditions, crown fires can completely consume the

overstory without severely damaging the soil (Ryan &

Noste, 1985).

BAER teams are tasked with minimizing post-fire ero-

sion effects and shortening ecosystem recovery times. The

removal of vegetative cover is the single most influential

factor in increasing erosion risk (Diaz-Fierros, Rueda, &

Moreira, 1987; Renard, Foster, Weesies, & Porter, 1991).

Fire severity is the factor which most influences how well

vegetation recovers (Lyon & Stickney, 1976; Ryan & Noste,

1985). Therefore, BAER teams are interested in mapping

both factors. While all vegetation is usually removed in

areas of high fire severity, not all areas with total vegetative

cover removed are the most severely burned.

Landsat data record only surface reflected values, and

cannot detect subsurface characteristics or how deep heat

has penetrated. Soil color and texture can be changed by

severe fire, but often ash covers the surface for several

weeks after the fire, obscuring the soil surface. It has yet to

be shown that Landsat data acquired immediately after a fire

can distinguish between fire severity classes where all

vegetation is removed and the soil has not been deeply

charred, and where the soil has been deeply charred. Some

researchers have assessed fire severity by examining vege-

tation recovery one and more years post-fire (Jakubauskas,

Lulla, & Mausel, 1990; Key & Benson, 1999b; White et al.,

1996). Flame length or fire temperature cannot be measured

with post-fire Landsat data but how much of the overstory is

consumed during the fire can be determined.

The work presented in this paper was accomplished

within the first year after the fire and did not consider

multi-year post-fire data. The post-fire image date was 6

weeks after containment of the fire and prior to summer

rains that would promote vegetation growth. Potential

vegetation recovery therefore cannot be quantified and only

vegetation removal or short-term mortality due to fire could

be quantified in this study. Since over 70% of the study area

was covered by coniferous forest prior to the fire, ‘‘canopy

consumption’’ most accurately describes the fire effects

mapped during this project.

This paper has two objectives: (a) determine whether an

unsupervised classification of canopy consumption derived

from the differencing of pre-fire and post-fire indices from

multispectral satellite data can be more accurate than digitiz-

ing from color infrared photography, and (b) show that

accuracy of the canopy consumption map may be improved

by incorporating a pre-fire vegetation classification.

2. Data and methods

2.1. Study area

The approximately 17,500-ha Cerro Grande Fire of May

6–31, 2000 occurred on the eastern slopes Jemez Moun-

tains, approximately 40 km northwest of Santa Fe, NM,

USA (Fig. 1). The fire encompassed the western portions of

Los Alamos County on the east, including portions of Los

Alamos National Laboratory (LANL), northern portions of

Bandelier National Monument (BNM) on the south, the

Santa Fe National Forest to the crest of the Sierra de los

Valles on the west bordered by the Valles Calderas National

Preserve (VCNP), and the Santa Clara Indian Reservation

on the north. Precipitation levels range from about 46 cm/

year at the Los Alamos town site to 76 cm/year at the

highest elevations in the Sierra de los Valles, with 40%

occurring during monsoon thunderstorms in July and

August (Bowen, 1990).

Pinyon–juniper woodlands are the dominant vegetation

community at the lower elevations of the study area between

1700 and 2100 m. Primary tree species are one-leaf pinyon

(Pinus edulis) and one-seed juniper (Juniperous mono-

sperma). Ponderosa pine (Pinus ponderosa) forests extend

from 1900 m in protected canyons to 2400 m on the lower

slopes of the Sierra de los Valles. Mixed conifer forest

intergrades with ponderosa pine communities above 2100

m, and extends to the top of the Sierra de los Valles.

Douglas-fir (Pseudotsuga menziesii), white fir (Abies con-

color), and limber pine (Pinus flexilis) are the dominant

trees at the lower mixed confier range with Englemann

spruce (Picea engelmannii) and subalpine fir (Abies lasio-

carpa) occurring at the higher elevations. Aspen (Populus

tremuloides) occurs at the same elevations, and may be

intermingled with mixed conifer forest, or may be dominant

in previously burned areas (Balice, 1998; Foxx & Tierney,

1980).

2.2. Pre-fire to post-fire change image

Multi-temporal change detection of remotely sensed data

is a common method for determining how biophysical

systems change through time (Singh, 1989). Fire can

produce significant changes to forested ecosystems. Change

detection algorithms provide for quantification of the pattern

and extent of fire effects. We had in our image catalog a July

3, 1997 Landsat TM image that could be used as a pre-fire

image. This image was cloud-free over the fire scar, and

matched the phenology of post-fire images. There had been

negligible change in the landscape within the fire perimeter

during the 3 years prior to the Cerro Grande Fire (e.g.,

construction of houses in Los Alamos, and fuels treatments

on US Forest Service (USFS) and LANL property along

State Highway 501). We felt these minor changes would

produce fewer errors in the change detection algorithm than

clouds and/or snow appearing in images acquired immedi-

ately before the fire. A Landsat ETM image from July 17,

2000 that had been terrain corrected by USGS was used as

the post-fire image. This scene was the first image available

that was smoke and cloud-free over the entire fire scar. The

date was optimal in that it occurred more than 6 weeks after

the fire (allowing unburned killed vegetation to drop leaves)

but before the green-up due to the summer monsoon rains.
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Some post-fire watershed treatments in severely burned

areas however are visible in the image. The 1998 Oso

Complex Fire, occurring between our pre- and post-fire

image dates, was visible in the post-fire image, but did not

overlap the Cerro Grande Fire.

Change detection methods require that images be co-

registered, compensated for atmospheric effects, and scaled

to the same units (Jensen, 1996). The processing steps to co-

register images, transform the values in both images to

reflectance, and calculate the change image are described

below.

2.2.1. Image preprocessing

All image processing was performed using ERDAS

Imagine version 8.3.1 on a Windows NT workstation. The

July 3, 1997 pre-fire image was orthorectified to the July 17,

2000 ETM image using a terrain correction algorithm. A

digital elevation model (DEM) matching the base image is

required for this algorithm. The USGS 7.5-min National

Elevation Dataset for New Mexico was acquired and subset

to match the 2000 image. Orthorectification was accom-

plished using 23 ground control points, producing a 0.48-

pixel RMSE. The change detection algorithm incorporates

only the near-infrared and mid-infrared wavelengths.

Atmospheric scattering is negligible in the infrared bands

(Avery & Berlin, 1992). Therefore, we chose not to perform

any atmospheric corrections. Digital numbers of the pre-fire

Landsat 5 image were converted to reflectance as described

by Markham and Barker (1985). Preprocessing of the July

17, 2000 Landsat ETM post-fire image consisted of con-

verting to reflectance as specified in the Landsat 7 Science

Data User’s Handbook (NASA, 1998).

2.2.2. Change detection algorithm

Research by Clark (2000) has shown that pre- and post-

fire differences of mid-infrared to near-infrared ratio (TM

band 7/TM band 4) provided the highest contrast fire scar in

comparison to TM band 4, PCA, Kauth–Thomas, NDVI,

and MSAVI and, therefore provides the best enhancement

for classifying changes due to fire. Previous researchers

have shown that up to a year after fire the near-infrared (TM

band 4) decreases the most in reflectance and the mid-

infrared band 7 increases the most in comparison to pre-fire

values (Lopez Garcia & Caselles, 1991; White et al., 1996).

This relationship was true also for the Cerro Grande Fire

immediately after the fire (Fig. 2). A normalized ratio of

these two bands will be more sensitive (i.e., produce greater

dynamic range) to fire effects (desiccated vegetation, soil

moisture, etc.) than either of the two individual bands.

Lopez Garcia and Caselles (1991), and Key and Benson

(1999b) both derived a normalized ratio to exploit this

relationship (Eq. (3)). NBR values range between � 1 and

1 as does the NDVI. In pre-fire images, vegetated areas have

values greater than zero and areas of bare ground or rock

have values less than zero. In post-fire images, increasing

fire severity is associated with decreasing values.

Fig. 1. Location of Cerro Grande Fire study site. The fire perimeter is outlined in black.
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The NBR was calculated for both pre-fire and post-fire

images and rescaled so that the values ranged between 0 and

2. The post-fire NBR was subtracted the from the pre-fire

NBR to obtain the change image. The resulting image

shown in Fig. 3 is overlain with the Cerro Grande Fire

perimeter. Increasing degrees of change in the image are

represented by increasingly lighter shades of gray ranging

from black, no change, to white, maximum change. Clouds

and cloud shadows from both the pre- and post-fire images

were masked out and appear black outside the fire perimeter.

The area of extreme change directly north of the Cerro

Grande Fire is the Oso Complex Fire that occurred in 1998,

between the pre- and post-fire image dates.

2.3. Fire perimeter

The fire perimeter was mapped to mask the change image

so that only change within the fire perimeter would be

included during later analysis of the change image. The

change image was used in addition to post-fire true color

aerial photos and pre-fire USGS digital orthophoto quarter

quadrangles (DOQQs) to identify the fire perimeter. The

post-fire 1:12,000 true color aerial photos contracted by the

USFS were taken on May 30, 2000 over the entire fire scar.

The perimeter was digitized onto DOQQs using the change

image as the primary cue and verified with the aerial

photographs. The area within the digitized perimeter was

computed within a GIS and compared with BAER team fire

perimeter. There were only minor differences between the

two perimeters, with the new perimeter resulting in an area

70 ha (0.4%) larger than the BAER perimeter.

2.4. Pre-fire vegetation classification

One of our objectives was to determine whether post-fire

canopy consumption classes exhibit unique ranges of

change in different vegetation types. In detecting moderate

levels of forest damage due to defoliation in spruce forests,

Ekstrand (1994) was able to increase classification accura-

cies by pre-classification stratification of uniform areas of

forest structure. Kushla and Ripple (1998) increased the

accuracy in a classification of post-fire canopy survival by

incorporating pre-fire Kauth–Thomas wetness with post-

fire Landsat TM band transformations. Kauth–Thomas

wetness has been shown to be correlated to forest structure

(Cohen & Spies, 1992). Although they did not implement it,

Fig. 3. Pre-fire to post-fire change image with Cerro Grande Fire perimeter

overlain. Unburned areas appear dark, most severe white. 1998 Oso

Complex Fire appears north of the Cerro Grande Fire. Masked clouds and

cloud shadows appear black.

Fig. 2. Change in mean reflectance by Landsat band number pre-fire to post-fire within Cerro Grande Fire perimeter.
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White et al. (1996) hypothesized they could improve a

classification of fire severity by stratifying with pre-fire

vegetation type before classifying.

The Cerro Grande Fire area encompassed predominately

four forest types: (1) dry open pinyon–juniper woodlands;

(2) ponderosa pine; (3) moist, mostly closed canopy mixed

conifer; and (4) aspen. These overstory types typically have

distinct spectral characteristics due to differences in site

moisture and chlorophyll absorption characteristics (i.e.,

vegetation density, leaf area index, etc.). The change image

was derived from the near- and mid-infrared bands, which

are especially sensitive to these characteristics (Avery &

Berlin, 1992). The change image should reflect how much

change occurred in each overstory type, from unburned

conditions to complete canopy removal, since a full range of

canopy consumption classes occurred in each forest type.

We expected the range of change in each overstory type to

be unique. For example, fire intensity and severity should be

less in the pinyon–juniper woodlands in comparison to the

mixed conifer due to smaller pre-fire fuel loads.

A maximum likelihood classification was performed on

the July 3, 1997 Landsat TM image using the six non-

thermal bands and topography (Fig. 4). Training sites were

chosen based upon field knowledge, DOQQs, and USFS

true color 1:15,840 aerial photographs acquired on Septem-

ber 22, 1992. Error analysis was performed using 186 global

positioning system (GPS) located plots where fuels data had

been sampled before and after the Cerro Grande Fire

(Balice, 2001; Balice, Miller, Oswald, Edminster, & Yool,

2000; Balice, Oswald, & Martin, 1999). Data gathered in

these plots included identification of vegetation type, per-

cent canopy cover, and dead and down fuels components as

per standard USDA Forest Service procedures (Brown,

Oberheu, & Johnston, 1982).

2.5. Fire effects maps

2.5.1. Definition of class categories

Most prior research in fire severity mapping have used

either four severity categories (e.g., unburned, low, moder-

ate, high) (Turner et al., 1994) or three categories, combin-

ing the low and unburned into one class (Jakubauskas et al.,

1990; Patterson & Yool, 1998). Previous researchers have

shown that understory components can be detected through

satellite remote sensing only when canopy cover is sparse

(Franklin, 1986). Stenback and Congalton (1990) found for

example that Landsat TM data were sensitive to understory

response under canopies with 30–70% crown closure in the

Sierra Nevada of northern California but insensitive with

canopies over 70% closure. Most of the Cerro Grande study

Fig. 4. Pre-fire vegetation classification. Maximum likelihood classification of July 3, 1997 Landsat TM image.
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area is composed of mixed conifer and ponderosa pine

forest with closed canopy. Pre-fire fuels plots in the study

area indicated the average canopy cover was about 80%

(Balice et al., 2000). The study area also included montane

and plains grasslands, and pinyon–juniper woodlands with

less than 70% canopy closures. Therefore, in this study

canopy consumption was mapped in four classes (unburned,

low, moderate, and high) to allow delineation of unburned

and low classes in low canopy cover classes.

The definition of severity classes has not been consistent

among previous remote sensing studies. Some definitions

have been vague and used terms such as ‘‘mostly’’ or

‘‘partially’’ while others have included soil effects in their

definitions (Jakubauskas et al., 1990; Turner et al., 1994;

White et al., 1996). While definitions used by these

researchers are not wrong, they are not precise and therefore

may cause some confusion between classes, or they are

difficult to implement with aerial photography. We have

chosen to use the overstory component of the composite

burn index (CBI) defined by Key and Benson (1999a)

(Table 1). While Landsat data do contain information about

the understory and substrate in non-closed canopy situa-

tions, they are integrated over 30 m so it is difficult to

attribute whether the understory, overstory, or both were

burned using Landsat data alone. Advantages to the over-

story class definitions include: (1) they are precisely

defined; (2) they describe overstory effects that are indica-

tive of flame length, which are correlated with understory

mortality; and 3) they provide consistent criteria which can

be estimated from either aerial photography or the ground

for developing training data and error analysis. The excep-

tions are low intensity surface fires, which in montane

grassland systems (no overstory exists) fire severity is low

by definition, and under closed canopies surface fires are

difficult to detect from either satellite or aerial photography.

2.5.2. Change image classification

Unsupervised and supervised classifications were per-

formed of the pre- vs. post-fire ‘‘change’’ image, with and

without stratifying by pre-fire vegetation type. Since BAER

team maps were all derived with three classes, our unsu-

pervised classifications were performed with three classes

(unburned/low, moderate, and high) in addition to four

classes (unburned, low, moderate, and high). Four catego-

ries of canopy consumption were delineated in the super-

vised classifications (unburned, low, moderate, and high).

The resulting ‘‘unburned’’ and ‘‘low’’ classes were com-

bined in the supervised classifications to create three classes,

per the BAER protocol for a total of eight classification

trials (Table 2). Prior to classification, the change image was

restricted to the fire perimeter to eliminate confusion with

spectral signatures of change outside the fire. All unsuper-

vised classifications were performed using an Iterative Self-

Organizing Data Analysis Technique (ISODATA). The

algorithm employed a minimum distance K-means formu-

lation to organize pixels into a cluster for each canopy

consumption class (i.e., a total of three clusters delineating

unburned/low, moderate, and high canopy consumption

classes). A maximum likelihood algorithm was used for

the supervised classifications. Training sites were identified

from post-fire true color 1:12,000 aerial photos to develop

signatures for the supervised classifications.

2.5.3. Accuracy assessment

Eighty-seven plots were surveyed after the fire to deter-

mine post-fire effects and recovery (Balice, 2001). These

plots were insufficient in number to perform a statistically

significant error analysis of the canopy consumption maps.

Congalton (1991) recommends that 50 verification points in

each class is adequate for areas of less than 1/2 million ha,

or classifications with less than 12 classes. Ground data are

usually the most reliable source of reference data for

accuracy assessment. When sufficient ground data are not

available however, aerial photos may be used to assess the

accuracy of maps derived from Landsat TM data. Large-

scale aerial photos are generally considered to be one step

closer to the ground than satellite data (Congalton & Green,

1999). To obtain a sufficient verification data set, 372

random points were selected. These points were stratified

by canopy consumption class so at least 50 points were in

Table 1

Overstory consumption class definitions from Key and Benson (1999a)

Unburned Low Moderate High

Intermediate trees: 5–20 m tall

% Green 100% 80% 40% None

% Brown None 5–20% 40–80% None

% Black None 5–20% 60% 100%

Char height None 1.5 m 2.8 m >5 m

Large trees: >20 m tall

% Green 100% 95% 50% None

% Brown None 5–10% 30–70% None

% Black None 5–20% 50% 100%

Char height None 1.8 m 4 m >7 m

Table 2

Canopy consumption classification combinations

Classification Description

UV3 Three class unsupervised classification with

vegetation stratification

UV4 Four class unsupervised classification with

vegetation stratification

UN3 Three class unsupervised classification without

vegetation stratification

UN4 Four class unsupervised classification without

vegetation stratification

SV3 Three class supervised classification with

vegetation stratification

SV4 Four class supervised classification with

vegetation stratification

SN3 Three class supervised classification without

vegetation stratification

SN4 Four class supervised classification without

vegetation stratification
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the smallest class by area. The points were overlain on pre-

fire DOQQs to aid in visually identifying the locations on

post-fire 1:12,000 true color aerial photos. The canopy

consumption class for each point was estimated from the

aerial photos using categories listed in Table 1.

Accuracy assessment of all classifications was accom-

plished through the use of error matrices detailing produc-

er’s and user’s errors and an overall Kappa statistic

(Congalton & Green, 1999). The Kappa statistic, which

ranges between 0 and 1, is a conservative measure of the

difference between the actual agreement between reference

data and an automated classifier, and the chance agreement

between the reference data and a random classifier (Con-

galton & Green, 1999). A Kappa of 0.76 thus means that the

classification accuracy was 76% greater than chance.

Error matrices of all classifications were compared using

a Z-test to determine whether the overall Kappa values, and

therefore two error matrices, were significantly different.

Fig. 5. Cerro Grande Fire BAER team fire effects maps. (A) Fire severity, (B) vegetation mortality, and (C) forest mortality in three classes. Vegetation

mortality classes 10–40% and 40–70% were combined in panel (B).
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The statistic for testing whether error matrices are signifi-

cantly different is:

Z ¼ jKappa1� Kappa2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðKappa1Þ þ varðKappa2Þ

p ð4Þ

where Z is standardized and normally distributed. Given the

null hypothesis H0: Kappa1�Kappa2 = 0, H0 is rejected if

Z>Za/2, where a/2 is the confidence level of the two-tailed Z-
test (Congalton & Green, 1999).

2.5.4. BAER team derived maps

The Cerro Grande BAER team produced three maps

relating to fire effects: (1) burn severity, (2) vegetation

mortality, and (3) forest mortality (Fig. 5). Digital color

infrared aerial photography acquired on May 20–21 with a

pixel resolution of 3 m was used to create these three maps.

Individual tree canopies in closed canopy conditions cannot

easily be identified at this scale. The photographs were

georeferenced and mosaicked by a contractor and delivered

to the BAER team on May 22. While total fire containment

did not occur until May 31, the fire perimeter did not change

after May 18 (BAER, 2000). A final fire perimeter was

derived from daily operational fire progression maps and the

post-fire color infrared photography.

Post-fire photography is not available to all BAER teams

and few fires even have BAER teams assigned. The Cerro

Grande fire is an example of best case methods employed

for mapping fire effects by BAER teams, and thus provided

a ‘‘best’’ case for testing alternative methods. For most fires

a perimeter may be the only map product produced.

The following descriptions of the map products derived

by the Cerro Grande BAER team are summarized from the

BAER (2000) report.

2.5.4.1. Burn severity. The BAER burn severity map was

created by digitizing polygons of unburned/low, moderate,

and high severity on digital color infrared aerial photo-

graphs and verified by ground observations. The mapping

criteria included ‘‘soil hydrophobicity (water repellency),

ash depth and color (fire severity), size of residual fuels (fire

intensity), soil texture and structure, and post-fire effective

ground cover’’ (BAER, 2000, p. 276). Digitized polygons

were no less than 40 acres (16 ha), leaving the possibility of

small areas of non-homogenous burn severity within the

polygons.

2.5.4.2. Vegetation mortality. Vegetation mortality was

mapped to aid in evaluating impacts to wildlife habitat,

the recovery ability of native plant associations, watershed

stability, and potential treatments. The burn severity map,

aerial and ground surveys were used by the BAER team to

map mortality of grass, herb, shrub, and all tree species.

Mortality was mapped in four categories: 0–10%, 10–40%,

40–70%, and 70–100%. Most high severity burn areas

experienced greater than 70% vegetative loss. The majority

of moderate burn severity areas experienced a 10–40% loss

although some had mortality of up to 70%. Low burn

severity areas were characterized primarily as having less

than 10% vegetation mortality (BAER, 2000). The 10–40%

and 40–70% vegetation mortality classes (Fig. 5B) were

combined to facilitate comparison to canopy consumption

maps derived in this study.

2.5.4.3. Forest mortality. The BAER team mapped forest

mortality to determine where forest rehabilitation was

required and potential salvage could occur. Classes of mortal-

ity were mapped by digitizing polygons on the color infrared

photography. Helicopter and ground surveys served to refine

and verify the degree of tree mortality within each digitized

polygon. All previously forested areas within the burn

perimeter were classified into one of three forest burn

categories; understory, mosaic, or stand replacement. Under-

story burn consisted of areas that lost less than 25% of

standing tree volume.Mosaic burn areas were where between

25% and 80% of standing trees were killed. Mortality was

rated as stand replacement where greater than 80% of stand-

ing volume was killed or expected to die within 3 years

(BAER, 2000). Although not explicitly stated by the BAER

report, the minimum mapping unit of this map is assumed to

be about 16–20 ha, as are the other BAER-derived maps.

Table 3

Error matrix for the pre-fire vegetation classification verified with plot data

Class name Reference User’s

1 2 3 4 5 6 7 8 Total
accuracy

(%)

1. Urban 4 2 6 66.7

2. Plains

grassland

1 1 0.0

3. Pinyon–

Juniper

1 11 1 5 1 19 57.9

4. Shrubs 1 1 0.0

5. Montane

grasslands

1 5 1 7 71.4

6. Ponderosa

pine

1 49 5 54 88.9

7. Mixed

conifer

5 82 1 88 93.2

8. Aspen 1 2 6 9 66.7

Total 6 0 15 0 7 60 91 7 186

Producer’s

accuracy

(%)

66.7 73.3 71.4 81.7 90.1 85.7 84.3

Overall

Kappa

0.76

Table 4

Change value statistics by overstory type from pre-fire vs. post-fire within

the fire perimeter

Overstory category Mean Standard deviation Range

Aspen 0.38 0.28 1.15

Mixed Conifer 0.52 0.03 1.22

Ponderosa Pine 0.37 0.25 1.08

Pinyon–Juniper 0.21 0.15 0.79

Larger values indicate a larger degree of change.

J.D. Miller, S.R. Yool / Remote Sensing of Environment 82 (2002) 481–496 489



3. Results and discussion

3.1. Vegetation classification

The 158 plots where fuels data had been collected prior

to the Cerro Grande Fire and 28 fire severity monitoring

plots established post-fire were used to validate the vegeta-

tion classification. These plots were concentrated in aspen,

mixed conifer, ponderosa pine, and pinyon–juniper com-

munities, leaving most classes with minimal or no verifica-

tion points. Mixed conifer and ponderosa pine were the only

two classes with more than 50 verification points (Table 3).

These plot data, however, were the best source of GPS-

located points for verifying the pre-fire vegetation classi-

Fig. 6. Maps of three classes of canopy consumption using supervised and unsupervised classifications. See Table 2 for a description of canopy consumption

classification definitions.
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fication. The resulting overall Kappa for the vegetation

classification was 0.76.

One of the objectives of this paper was to determine

whether stratification of the change image by pre-fire

vegetation type would improve the accuracy of a canopy

consumption map. Average change values and most notably

the range of change values were different by overstory type

(Table 4). This would seem to indicate that stratification by

vegetation type may improve classification accuracy.

3.2. Canopy consumption maps

The canopy consumption classifications are shown in

Figs. 6 and 7. The number of hectares in the High class of

the supervised classifications agreed fairly well with the

BAER team burn severity map. Supervised classifications

consistently classified more pixels as High and fewer pixels

as Unburned or Unburned/Low compared to the unsuper-

vised classifications (Fig. 8). The classifications with vege-

Fig. 7. Maps of four classes of canopy consumption using supervised and unsupervised classifications. See Table 2 for a description of canopy consumption

classification definitions.
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tation stratification tended to move pixels from the lower

canopy consumption classes to the higher consumption

classes to a lesser degree than the classifications without

vegetation stratification. For example, the SV4 had more area

classified as Low and Moderate, and less as Unburned

compared to SN4. UV4 had more pixels classified as Mod-

erate and High in comparison with UN4 (Fig. 8B). The four-

class unsupervised classifications had fewer pixels in the

Moderate and High classes in comparison with the three-class

unsupervised classifications. This was not surprising because

the clustering algorithm should reallocate pixels to create a

fourth class. The ISODATA algorithm only had a one-dimen-

sional space to separate pixels into classes. There tended to be

only twomodes in the frequency of values in the pre- vs. post-

fire image, making it difficult for the K-means algorithm to

pick break points between three and four classes. The means

of the classes therefore tended to be uniformly distributed

along the one-dimensional space. This is a common feature of

K-means classifiers (Schowengerdt, 1997). The three-class

supervised classifications (SV3 and SN3) were generalized

from the four-class classifications (SV4 and SN4). The

Unburned and Low classes were combined to create a single

class and therefore did not yield a similar reallocation in the

other classes as above. UN4 exhibited the least severe fire

conditions, while SV4 and SV3 displayed the most severe in

terms of area per class.

Contingency matrices and Kappa statistics were gener-

ated for all canopy consumption maps (Table 5). Random

points (n = 327) were selected and photo-interpreted for

analysis of the mapping error. These points were stratified

by canopy consumption class using the SV4 classification,

so at least 50 points were in the Unburned class which was

the smallest class by area (Table 6). In general, classifica-

tions with three classes of canopy consumption were sig-

nificantly better than the four-class classification when

comparing Kappa values (Tables 5 and 7). SV3 did not

however have a significantly larger Kappa than SV4. The

user’s accuracies of the Low and Unburned consumption

classes were low, as expected since pre-fire fuels plots

indicated average canopy cover was about 80%, making

detection of understory effects difficult (Stenback & Con-

galton, 1990).

Fig. 8. Bar graph of the number of hectares burned. (A) Three fire effect classes by the BAER team and three classes of canopy consumption using supervised

and unsupervised classifications. (B) Four canopy consumption classes using supervised and unsupervised classifications. See Table 2 for a description of

canopy consumption classification definitions.
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Vegetation stratification did not significantly improve the

unsupervised classifications (UV3 and UV4) over the non-

stratified classifications UN3 and UN4 (Table 7). This lack

of improvement was perhaps due to the uniform distribution

of class means in the one-dimensional space by the K-means

algorithm not representing the actual distribution of severity

classes. The stratification did however significantly improve

the supervised classifications (SV3 and SV4) over the non-

stratified classifications (SN3 and SN4).

The SV3 classification (Kappa = 0.86) had a significantly

higher Kappa than all but the SV4 classification (Kappa =

0.80). The SV4 classification posted a significantly higher

Table 5

Results for classifications verified with aerial photos

Classification Overall kappa

UN3 0.72 User’s

Producer’s

UV3 0.73 User’s

Producer’s

SN3 0.78 User’s

Producer’s

SV3 0.86 User’s

Producer’s

BAER burn severity 0.63 User’s

Producer’s

UN4 0.30 User’s

Producer’s

UV4 0.32 User’s

Producer’s

SN4 0.66 User’s

Producer’s

SV4 0.80 User’s

Producer’s

BAER vegetation mortality 0.43 User’s

Producer’s

BAER forest mortality 0.38 User’s

Producer’s

See Table 2 for a description of canopy consumption classification definitions.

Classification accuracy (%)

Unburned/Low Moderate High

78.4 59.3 100.0

92.0 60.0 83.8

76.2 64.1 100.0

94.9 51.3 88.3

89.8 64.2 95.3

82.6 76.3 92.9

94.4 72.3 100.0

84.8 91.3 95.5

66.8 54.8 94.0

92.7 21.5 90.9

Unburned Low Moderate High

24.8 26.2 24.0 100.0

100.0 20.8 15.0 70.8

23.9 27.1 29.6 100.0

100.0 17.9 20.0 74.0

44.4 81.8 64.2 95.3

100.0 42.5 76.3 92.9

62.7 91.8 72.3 100.0

100.0 63.2 91.3 95.5

0–10% 10–70% 70–100%

9.3 37.6 78.8

20.4 81.0 87.0

Under-burn Mosaic burn Stand replacement

89.5 31.6 82.3

12.4 74.7 87.7

Table 6

Area burned within Cerro Grande Fire perimeter by vegetation class.

Canopy consumption classes derived from supervised classification with

vegetation stratification (SV4)

Vegetation

class

Unburned

(ha)

Low

(ha)

Moderate

(ha)

High

(ha)

Total area

within fire

perimeter

(ha)

% of

total area

Water 2 0 0 0 2 0.0

Urban 327 0 141 4 472 2.7

Bare ground,

rock

246 0 0 0 246 1.4

Plains

grasslands

130 41 0 0 172 1.0

Pinyon–Juniper

woodlands

641 547 770 647 2606 14.9

Shrubs 89 103 102 62 355 2.0

Montane

grasslands

68 371 132 43 614 3.5

Ponderosa pine 228 1184 1644 1504 4559 26.1

Mixed conifer 777 1430 1825 4073 8105 46.4

Aspen 10 138 65 116 329 1.9

Total 2519 3813 4679 6448 17459 100.0

Table 7

Kappa analysis comparing canopy consumption error matricesa

Classification UN3 UV3 UN4 UV4 SN3 SV3 SN4 SV4

UN3 0.32 6.23 6.05 1.46 3.67 1.04 1.65

UV3 NS 6.45 6.27 1.14 3.36 1.29 1.39

UN4 S S 0.27 7.23 8.66 4.72 6.96

UV4 S S NS 7.07 8.54 4.52 6.80

SN3 NS NS S S 2.22 2.15 0.46

SV3 S S S S S 3.76 1.25

SN4 NS NS S S S S 2.28

SV4 NS NS S S NS NS S

See Table 2 for a description of canopy consumption classification

definitions.

S = significant, NS = not significant.
a Z = 1.96 significant at a = 0.05.
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Kappa than all other four-class classifications. The SV4

classification had a higher Kappa than all three-class vari-

eties, but was not significantly different from any of them.

Table 6 lists the number of hectares burned by canopy

consumption class as identified with the SV4 classification.

Although the number of post-fire field plots were not

sufficient to perform a sound error analysis of the canopy

consumption classifications, we generated error matrices for

the supervised four consumption class maps (Table 8). Only

one of the plots revisited after the fire within the fire

perimeter was unburned, perhaps unrealistically lowering

the accuracy of the four consumption class classification

(SV4) from 0.80 to 0.65 (Tables 5 and 8). Comparing the

error matrices for the three consumption classes (SV3) the

overall Kappa fell from 0.86 to 0.76 (significant at a = 0.2,
not significant at a = 0.1). The principal change was the

drop in producer’s accuracy of the Moderate class from

91% to 62% due to confusion with the Low class. This may

suggest that the Moderate class was overestimated and Low

class underestimated in the classification process, however

the number of plots is low (16) and any conclusions are

suspect.

3.3. BAER team-derived maps

The 372 verification points used in the error analysis of

the canopy consumption maps were recycled in an error

analysis of the BAER team fire effects maps. The best

BAER map produced an overall Kappa of 0.63 (Table 5).

All three-class trials (UN3, UV3, SN3, and SV3) produced

significantly higher Kappa statistics than the BAER team

maps (Table 9). The 30 m mapping unit of the canopy

consumption maps vs. 20 ha or larger for the BAER team

maps is one reason for the higher Kappa values. Many areas

of moderate severity occurred in small patches and in the

margins of high to low severity. The BAER burn severity

map differed most by area from the UN3 and UV3 maps in

the Unburned/Low and Moderate classes (Fig. 8). Fewer

hectares were classified as Low and High and more as

Moderate in the UN3 and UV3 trials, due most likely to

the manner in which the unsupervised classification tended

to uniformly distribute the means of the classes. While all

classifications used remotely sensed data to delineate burned

areas, the BAER team mapped fire severity accounting for

soil conditions through ground observations as opposed to

canopy consumption. In addition, the BAER team definition

of Low vs. Medium vs. High classes may have differed from

ours, influencing the error analysis. (The BAER team did

not publish their definition.) The High BAER class agreed

fairly well with the SV3 classification, both having high

producer’s accuracies of over 90%. All unsupervised clas-

sifications underestimated the High class in comparison to

the BAER maps as shown by the smaller producer’s accu-

racies (Table 5). This may be significant since mitigation

efforts need to be targeted at those severely burned areas.

The BAER forest mortality map should agree favorably

with SV3 (the best canopy consumption map) because the

primary feature mapped was overstory consumption. The

forest mortality map had the smallest overall Kappa of the

three BAER team maps, however (Table 9). While the High

mortality classes were virtually identical in size to the best

supervised classification (SV3), the Mosaic class of the

forest mortality map was much larger than the Moderate

class of SV3 (Fig. 8). This result may be attributed to

different definitions of the class labels, as ‘‘Mosaic’’ implies

an all-encompassing class containing areas of varying

mortality, whereas ‘‘Moderate’’ defines a specific range of

mortality.

The vegetation mortality map had a low Kappa of

0.43. This may be due to the class categories not agreeing

Table 8

Results for the classifications verified with ground plot data

Classification Overall

kappa

Classification accuracy (%)

Unburned/Low Moderate High

SV3 0.76 User’s 80.0 62.5 97.6

Producer’s 85.7 62.5 93.0

Unburned Low Moderate High

SV4 0.65 User’s 0.0 63.0 62.5 93.0

Producer’s 0.0 73.9 62.5 97.6

See Table 2 for a description of canopy consumption classification

definitions.

Table 9

Kappa analysis comparing BAER team maps and three class canopy consumption error matricesa

Classification UN3 UV3 SN3 SV3 BAER severity BAER vegetation

mortality

BAER forest

mortality

UN3 0.32 1.46 3.67 2.04 6.00 7.07

UV3 NS 1.14 3.36 2.36 6.33 7.40

SN3 NS NS 2.22 3.51 7.47 8.57

SV3 S S S 5.76 9.69 10.85

BAER severity S S S S 4.00 5.04

BAER vegetation mortality S S S S S 0.98

BAER forest mortality S S S S S NS

See Table 2 for a description of canopy consumption classification definitions.

S = significant, NS = not significant.
a Z = 1.96 significant at a = 0.05.
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with the class limits of the canopy consumption maps.

The BAER classes were based upon percent of mortality

by area, whereas the consumption maps were based

primarily on average tree crown scorch (Table 1). The

BAER team indicated that most of the low burn severity

class areas fell primarily in the 0–10% mortality class,

and moderate severity burn classes in the 10–40% and

40–70% mortality classes (BAER, 2000, p. 372). How-

ever, upon examining their map it appears that a signifi-

cant area of low burn severity was placed in the 10–40%

class which was combined with the 40–70% class for this

project (Fig. 5).

4. Conclusions

Wildland fire effects mapping has become a standard

practice for post-fire resource management by Federal land

management agencies. Fire researchers and managers

require standard, reliable techniques for efficient mapping

and monitoring of wildland fire effects. We have demon-

strated in this paper a straightforward algorithm for map-

ping fire effects at increased accuracy over methods

currently in use for BAER. Additionally, these techniques

may be useful for applications other than BAER, such as

long-term monitoring projects. This algorithm can be

implemented by land management personnel with little

additional training.

We have shown that three-class unsupervised classifica-

tions using multi-date multispectral satellite data can pro-

duce maps of higher accuracy than maps produced using

airphoto interpretation. Gains in accuracy were achieved

primarily through the addition of middle infrared bands and

a finer mapping unit. Differences in mapped fire effects and

class categories between our maps and BAER team maps

were minor, but may have contributed to differences in

classification accuracies. It is difficult however to ascertain

how such factors contributed to the gains in accuracy we

attained. Some producer’s accuracy in mapping the most

severe fire effects may be sacrificed to gain an increased

overall Kappas as shown by the lower producer’s accuracies

of all unsupervised classifications.

Incorporating post-fire severity in a supervised classifi-

cation favors accurate mapping of the most severe fire

effects while preserving the fine spatial resolution. Super-

vised classifications all achieved higher Kappas over the

BAER team severity map, with three-class classifications

producing the highest Kappas. We have also shown that if

pre-fire vegetation data are available, stratifying training

sites by vegetation type further improves the Kappas of

supervised classifications when the fire occurs in multiple

vegetation types with unique spectral signatures. What

defines an acceptable classification accuracy is a manage-

ment decision, although it is always best to achieve the

highest accuracy possible. If a pre-fire vegetation classifi-

cation does not exist or cannot be derived in time for

application, then the stratification does not have to be

applied to achieve improved accuracies.

Not all fires are supported by BAER teams, and not all

BAER supported fires are able to afford aerial photography.

While the 8-day over-flight schedule of Landsat satellites

may reduce the likelihood of cloud-free scenes, the rela-

tively cheap cost of the data may provide an opportunity for

accurately mapping those fires. For non-BAER supported

fires the 8-day limitation may not be as much of an issue,

allowing for establishment of baselines for long-term eco-

logical monitoring. For high socio-economic impact fires

the higher classification accuracies achievable through the

use of satellite-derived data may be desirable for operational

planning of erosion mitigation and watershed rehabilitation

efforts.
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