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Abstract Fire regimes are complex systems that 
represent an aggregate of spatial and temporal events 
whose statistical properties are scale dependent. 
Despite the breadth of research regarding the spatial 
controls on fire regime variability, few datasets are 
available with sufficient resolution to test spatially 
explicit hypotheses. We used a spatially distributed 
network of georeferenced fire-scarred trees to inves- 
tigate the spatial structure of fire occurrence at 
multiple scales. Mantel's tests and geostatistical 
analysis of fire-occurrence time series led to infer- 
ences about the mechanisms that generated spatial 
patterns of historical fire synchrony (multiple trees 
recording fire in a single year) in eastern Washington, 
USA. The spatial autocorrelation structure of histor- 
ical fire regimes varied within and among sites, with 
clearer patterns in the complex rugged terrain of the 
Cascade Range than in more open and rolling terrain 
further north and east. Results illustrate that the 
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statistical spatial characteristics of fire regimes 
change with landform characteristics within a forest 
type, suggesting that simple relationships between 
fire frequency, fire synchrony, and forest type do not 
exist. Quantifying the spatial structures in fire occur- 
rence associated with topographic variation showed 
that fire regime variability depends on both landscape 
structure and the scale of measurement. Spatially 
explicit fire-scar data open new possibilities for 
analysis and interpretation, potentially informing the 
design and application of fire management on land- 
scapes, including hazardous fuel treatments and the 
use of fire for ecosystem restoration. 
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Introduction 

Large severe fires over the last decade remind us that 
wildfire may be the most important ecological 
disturbance in western North America. Forest man- 
agers are using both wildfire and prescribed fire to 
restore forests after the adverse effects of fire 
exclusion, giving priority to forests with low-severity 
fire regimes (ca. 25 million ha in the western US). 
Only a fraction of this area can be treated, so methods 
are needed to identify high-priority areas for pre- 
scribed fire. To integrate wildfire effectively into 
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managed landscapes it will be imperative to identify 
the scales at which fire phenomena are relevant for 
different ecosystem types and locations. 

Fire regimes are associated with specific geo- 
graphic areas and usually summarized by frequency, 
severity, seasonality, extent, and spatial distribution 
(Agee 1993; Johnson and Gutsell 1994). Identifying 
the spatial and temporal characteristics of fire 
regimes has proven difficult, however, and there is 
no consensus on how fire regime statistics should be 
calculated because means and variances of most 
metrics change with the temporal and spatial scales of 
analysis (McKenzie et al. 20f)Sa, Falk et al. 7,007). 

Climate, fuels, and topography control fire regimes 
at different temporal and spatial scales. The relative 
influences of these three controls can be classified as 
top-down or bottom-up (Lertzman and Fall 1998). 
Climate provides topdown controls on fire at large 
spatial scales, whereas topography and fuels are 
typically viewed as bottom-up controls influencing 
fire at smaller scales (Heyerdahl et al. 2001). Climate 
controls on fire regimes vary throughout western 
North America. For example, fire frequency in 
ponderosa pine (Pinus ponderosa) forests in the 
American Southwest is strongly associated with El 
Niiio Southern Oscillation (ENSO) cycles (Swetnam 
and Betancourt 1990; Veblen et al. 2000), whereas 
the relations in the mixed-conifer forests of the 
Northwest are less clear (Heyerdahl et al. 200 1 ; Hessl 
et al. 2004; Gedalof et al. 2005). Fuels exert bottom- 
up influences on fire regimes at fine spatial scales, 
also with regional variation in strength. For example, 
at fine scales, fuel type, quantity, and spatial config- 
uration influence fire regimes in Southwestern 
ponderosa pine forests (Allen et al. 2002). In similar 
forest types in the Northwest, microclimate exerts 
bottom-up controls on fire regimes by affecting fuel 
moisture (Tande 1979; Taylor and Skinner 1998; 
Heyerdahl et al. 2001; Hessl et al. 2004). Climate 
and fuels are linked with topography as the common 
denominator that acts at multiple scales to mediate 
the interaction between coarser and finer scale 
processes influencing fire regimes (Lertzman and 
Fall 1998). 

Many ecological processes are spatially and tem- 
porally dependent (Cliff and Ord 1.08 1 ; Legendre and 
Legendre 1998). For example, fire history research in 
low-severity fire regimes typically begins in the field 
with point measurements. Sample data become 
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increasingly spatially autocorrelated with finer- 
grained observations, because the temporal pattern 
of fires for one recorder tree will be most similar to 
those on nearby recorder trees (Dutilleul 1998). Fire- 
history data are often treated with standard parametric 
statistics, but they violate assumptions of indepen- 
dence (Domer et al. 2002). 

Fire scarring is best modeled as a stochastic 
process in which each tree or group of trees that 
records fire represents a random sample from a 
population that has a probability distribution (Lertz- 
man and Fall 1998; McKenzie et al. 2006a; Falk 
et al. 2007). The time series of fires associated with 
each recorder tree is one of many possible realiza- 
tions. Statistical theory allows us to treat each 
observation as a random variable with a mean, 
variance, and cumulative distribution. The underlying 
distributions of fire regime metrics are scale depen- 
dent because a fire regime is an aggregate of temporal 
events that overlap in space (Falk et al. 2007). By 
observing the properties of multiple fire events in 
space and time, we can detect patterns that may not 
be discernible for individual fires or at single points. 
Quantifying both spatial structures and scale depen- 
dence will bring us closer to estimating fire regime 
metrics that are comparable across landscapes and 
regions (Baker 1989; Falk et al. 2007). 

The statistical theory of random processes allow us 
to model the spatial dependence associated with fire 
regimes. Spatial and multivariate statistical methods 
(particularly variogram analysis and Mantel's tests) 
have been applied to spatially autocorrelated ecolog- 
ical data to quantify spatial dependence (Legendre 
and Troussellier 1988; Wagner 2003), epidemiology 
(Cliff and Ord 1981), soil sciences (Isaaks and 
Srivastava 1989), and genetics (Smouse et al. 1986; 
Oden and Sokal 1992). To date, however, no such 
analyses have been used to quantify the spatial 
structures associated with fire regimes, partly because 
of the dearth of fire-history datasets with adequate 
spatial resolution or extent. 

In this study, we took advantage of the largest 
existing spatially explicit fire-history dataset (Everett 
et al. 2000) to investigate the spatial structure in low- 
severity fire regimes associated with lower-elevation 
ponderosa pine-dominated forests in eastern Wash- 
ington State, USA (Table 1 ). We analyzed both global 
and multi-scale spatial structure using geostatistical 
methods. We hypothesized that fire occurrence in 
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Table 1 Location, analysis area, and sample sizes with temporal record of fire-scarred trees at each of the seven sites from northeast 
to southwest 

Site Location Fire Scars 

Lat. (N) Lon. (W) Study site (ha) Trees (n) No. fire scars First scar Last scar 

South Deep 48" 45' 117" 40' 15,597 168 680 1,399 1,986 
Quartzite 48" 17' 1 17" 37' 7,228 142 1,300 1,384 1,989 
Frosty Creek 48" 34' 119" 00' 47,793 420 4,46 1 1,343 1,994 

Twenty Mile 48" 36' 120" 17' 5,313 409 2,946 1,342 1,990 

Entiat 47" 48' 120" 20' 17,575 490 3,904 1,530 1,988 
Swauk Creek 47" 15' 120" 38' 2 1,654 665 7,048 1,257 1,942 

Nile Creek 46" 52' 121" 05' 39,979 234 2,3 14 1,367 1,970 

Total 155,139 2,528 22,653 

each site was controlled to varying degrees by 
topography, with stronger controls in sites with 
complex rugged terrain and weaker controls in areas 
with gentle terrain. The objectives of this study were 
to: (1) take advantage of the spatially explicit fire 
record to examine fire occurrence at multiple spatial 
scales; (2) identify spatial controls on fire regimes and 
infer the limits to these controls; and (3) identify 
future research and management opportunities asso- 
ciated with spatially explicit fire-history data. 

Methods 

Study area 

Fire history data were collected by Everett et al. 
(2000) from seven study sites located along a 300-km 
distance from the Colville National Forest in the 
Okanogan Highlands in NE Washington to the 
Okanogan-Wenatchee National Forest in central 
Washington, in the eastern Cascade Range (Fig. I ) .  
Topography in the study sites becomes increasingly 
complex and rugged along the gradient from NE to 
SW, reflecting dominant influences of continental 
Pleistocene glaciers in the NE versus primarily 
mountain glaciers in the SW. East of the crest of 
the Cascade Mountains, forest ecosystems are dom- 
inated by conifer species, with mixtures of ponderosa 
pine, grand fir (Abies grandis), and Douglas-fir 
(Pseudotsuga menziesii). Ponderosa pine, grand fir, 
and Douglas-fir occupy a wide elevational range in 
the Pacific Northwest; ponderosa pine dominates at 
low and middle elevations, with Douglas-fir and 

grand fir increasing in abundance with elevation 
(Franklin and Dyrness 1988). 

Data collection 

Everett et al. (2000) selected sites to capture the 
heterogeneity of the eastern Cascade landscape and 
span the range of ponderosa pine-dominated eco- 
systems. The size, sampling intensity, and fire record 
varied at each study site (Table I ) ,  as did climate, 
geomorphology, landform, and species composition. 
Within each study site, aerial photographs and 
topographic maps were used to identify and map 
aspect polygons, delineated by aspect (northerly or 
southerly) and slope (flat, moderate, or steep). Sizes 
of aspect polygons ranged from 32 to 1,700 ha, and 
the number of polygons within each site ranged 
from 2 to 21. Polygons were internally stratified into 
four to five sub-polygons to ensure that fire scar 
samples were spatially segregated in the polygon. 
All fire-scarred trees within each sub-polygon were 
mapped, and between 2 and 23 "high quality" trees 
(with a large number of scars) were sampled. 
Sections were cut from live trees (Arno and Sneck 
1977), and cross-sections were collected from 
stumps, snags and logs. 

Fire scars collected from both living and dead trees 
were prepared using standard procedures (Amo and 
Sneck 1977). All samples were then crossdated 
against an independent master tree-ring chronology 
developed from 20-50 climatically sensitive trees 
(without fire scars) within each sampling area. The 
year of each fire scar was determined by the position 
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Fig. 1 Fire history study 
sites, east of the crest of the 
Cascade Mountains, 
Washington, USA. From 
northeast to southwest: 
South Deep, Quartzite, 
Frosty Creek, Twenty Mile, 
Entiat, Swauk Creek, and 
Nile Creek. Inserts display 
hill shaded topography 
(ESRI 20M) with dots 
representing the locations of 
recorder trees. Total areas 
of study sites are given in 
Table 1 

of the scar relative to the dated sequence of annual 
rings in the cross-section (Dieterich and Swetnam 
1984). Based on the pattern of late season fires (July- 
October) in the modern record, dormant season fires 
were always assigned to the calendar year of the 
previous ring (representing a fall fire), rather than the 
following ring (representing a spring fire). For a 
complete description of the methodology see Everett 
et al. (2000) or Hessl et al. (2004). Topographic data 
were derived from 30 m x 30 m resolution USGS 
digital elevation models @EM). 

Topographic analysis 

To quantify topographic complexity, we calculated 
Hurst exponents (H) (Feder 1988) in order to compute 
the fractal dimension (D) for each of the seven sites 
(Turcotte 1989). Using DEMs, the average standard 
deviation of elevation (a) is calculated over varying 
window lengths (7). Window lengths ( 7 )  are increased 
from a minimum step size of 2 @Om), and increased 
by a factor of 2 to a maximum of one half the distance 
across the study site using a 'moving window' 
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method. The Hurst exponent (H) (Feder 1988) is the 
slope ( P )  from log (a) regressed on log (z). H is 
directly related to the fractal dimension (D) as: 

D = 2 - H  (I) 

Average standard deviation (a) over window sizes 
captures local relief in smaller windows and land- 
scape roughness in larger window sizes, thereby 
defining topographic relief across scales. Because of 
the limitations of raster modeling, windows were 
expanded linearly by rows and columns in the 
topographic grid rather than omni-directionally (as 
expanding circles). Besides its significance as the 
slope parameter in a log-log regression, the Hurst 
exponent value is open to other interpretations. A 
Hurst exponent of H = 0.5 suggests a random process 
or no autocorrelation, whereas 0.5 < H < 1 suggests 
long-range dependence and positive autocorrelation, 
and 0 < H < 0.5 suggests negative autocorrelation. 

Spatial analysis 

We quantified synchrony among temporal patterns of 
fire occurrence within the study sites, as reflected in 
fire-scar dates for individual recorder trees, using 
Sorensen's measure of dissimilarity (Sorensen 1948, 
Legendre and Legendre 1 998), hereafter "Sorensen's 
distance". The binary (0,l) time series of fire 
occurrence for recorder trees in each site were 
combined into matrices where rows were years and 
columns were recorder trees. Fire-occurrence dis- 
tance matrices were then created where each cell was 
calculated as: 

where dU is the entry in the ith row and jth column of 
the distance matrix, the values of k correspond to the 
years in the fire record, and the xik and xjk are either 1 
or 0, depending on whether a fire occurred in year k 
in the ith and jth recorder trees. 

This measure is bounded by [0, 11, where years in 
which no fires were recorded by either tree are 
considered to have no information. We assumed that 
if any two trees recorded the same fire year that it was 
the same fire. Fire-occurrence distance matrices for 

each study site were used as multivariate responses in 
Mantel's tests and variogram models. Analyses used 
a combination of ARCGIS 9.0 (ESRI 2oM) and Splus 
2000 for Windows (Insightful 2000). 

We used Mantel's tests (Mantel 1967) to test the 
null hypothesis that there was no spatial dependence 
of synchronous fire occurrence in each study area: 
fire-occurrence time series were no more similar to 
those at nearby recorder trees than to those more 
distant. Mantel's correlations were computed using 
Sorensen's distance matrices as the dependent vari- 
able (y) and Euclidean distance as the independent 
variable (x). The cross-product of the matrices (X,Y) 
is standardized by first subtracting means (X,y) and 
dividing by standard deviations (Sx ,Sr), then divid- 
ing the double summation by the effective degrees of 
freedom (d- 1) where d = the number of distances in 
the upper triangle of each matrix (n[n-1112) (Eq. 3). 
The correlation coefficients are thereby bounded on 
[- 1, 11 (Legendre and Legendre 1998). 

where i and j are row and column indices of the 
Sorensen's distance matrix X and the Euclidean 
distance matrix Y, respectively. 

Significance of correlations (rM) was evaluated via 
a weak-restricted randomization procedure in which 
the rows (i) and columns 0) of the distance matrices 
(X,Y) are randomly rearranged, and the correlation 
statistic is computed over 10,000 iterations to create a 
reference distribution (Legendre and Legendre 1938; 
Fortin and Payette 2002). 

The Mantel statistic provides a global metric for 
the dependence of similarity between fire records on 
geographic distance, but it does not quantify how 
Sorensen's distance changes over increasing geo- 
graphic distance. Semivariance (y) measures were 
used to decompose spatial variability among distance 
classes to detect finer scales and gradients of spatial 
dependence. 

A standard semivariance (y) for a univariate 
statistic is 

n-l n 

~ ( d ) = - ~ ~ w h i ( y h - ~ i ) ' , f o r h # 1  (4) 
2W h=I i=n+l 

Semivariance at distance d (y(d)) is a measure of 
the average degree of similarity (squared difference) 
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between pairs of observations (Yhr yi ) ,  possibly 
weighted (whi) as a function of distance and direction 
where membership in a distance class is detemined 
by the sum of weights (Whi) (Legendre and Fortin 
1989). Semivariance values are standardized covari- 
ance measures and the range is theoretically [O,oo], 
representing complete spatial dependence to no 
spatial dependence, although most observational data 
will have a finite variance. 

We used Sorensen's distance (Eq. 2) in place of 
the squared-distance term in Eq. 4. The semivariance 
of a distance class (y(d)) is thereby represented as the 
mean Sorensen's distance between pairs of observa- 
tions. We constructed omni-directional variograms of 
Sorensen's distance (hereafter "Sorensen vario- 
grams"). Spherical variogram models (Eq. 5) were 
fit using a weighted, non-linear least squares method 
(Cressie 1985). 

where C,  is the nugget, C is the sill effect, and A, is 
the range. We used the model parameters individually 
or in combination to interpret how spatial dependence 
changes across scale (Goovaerts 1997; Legendre and 
Legendre 1998; Webster and Oliver 200 1). 

Variogram patterns were considered robust for 
distance classes containing greater than 1% of the 
total possible pairs of points from the sample 
(Legendre and Fortin 1989). Spatial dependence 
was quantified by the ratio (sill/(sill + nugget)), 
where the nugget represents variance that is unrelated 
to the distance between observations (Wang et al. 
2002). We use this ratio as a surrogate for R ~ ,  or 
percentage variance explained, in that we are quan- 
tifying how much of the change in Sorensen's 
distance (analogous to the "Y" is a classic regres- 
sion) can be explained by lag distance (the "X"). 

Last, we wanted to be able to infer relationships 
between topographic structure and spatial autocone- 
lation structure, to quantify the degree of topographic 
control on fire across sites. As a direct link between 
variogram models and topographic complexity, we 
used simple linear regression to model variogram 
range (the distance beyond which between-tree 
dissimilarity does not increase further) as a function 
of the fractal dimensions calculated in the topographic 

structure analysis. This regression, combined with 
qualitative comparisons of both the Mantel statistics 
and Sorensen variograms with topographic complex- 
ity, guided our inferences about the strength of 
topographic controls on fire. 

Results 

Fractal dimensions ranged from approximately 
1.2-1.4 (Table 2). Regressions from roughness length 
calculations produced all positive (0.5 < H < I) ,  
significant slopes (H) at P < 0.005 (Table 2). The 
rank of the seven study sites, from gentle to complex, 
is Twenty Mile, Frosty Creek, South Deep, Entiat, 
Nile Creek, Quartzite and Swauk Creek, reflecting 
anomalies in the gentle-to-complex topographic gra- 
dient commonly assumed from NE to SW in eastern 
Washington. 

The null hypothesis tested with a Mantel's test, 
that fire synchrony was independent of geographic 
distance, was rejected for all seven study sites. 
Euclidean distances were positively and significantly 
correlated with fire synchrony (Table 3). The stron- 
gest dependence was in Nile Creek, Twenty Mile, and 
Swauk Creek (r = 0.50, 0.51, and 0.54), with mod- 
erate dependence present in the Entiat and Frosty 
Creek (r = 0.34 and 0.35), and weaker dependence in 
the Quartzite and South Deep (r = 0.29 and 0.19). 

Mean Sorensen's distance monotonically increased 
over geographic distance in all study sites (Fig. 2). 
Empirical variograms fit a spherical model (Eq. 5) 
over varying numbers of lags and maximum distances 
(Table 4). Percentage of variance in historical fire 

Table 2 Results of topographic structure analysis on the 7 
study sites-fractal dimensions, Hunt exponents and cornla- 
tions from roughness-length regressions 

Site Fractal dimension Hunt exponent R' 

South Deep 1.26 .74 .88* 

Quartzite 1.35 .65 .88* 

Frosty Creek 1.25 -75 .86* 

Twenty Mile 1.20 .80 .84* 

Entiat 1.30 .70 .79* 

Swauk Creek 1.40 .60 .86* 

Nile Creek 1.33 .67 .85* 

* Significant at P < 0.005. Study sites listed from northeast 
to southwest 
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Table 3 Spatial statistics of fire synchrony represented by (silll(sill + nugget)), and approximate extent (area of a circle 
Mantel con-elations and Sorensen variograms fit to spherical with the range as radius), which serves as a surrogate for modal 
models. Mantel's correlations were all significant (P < 0.01). fire size (see text). Nugget + sill, and therefore one or the other 
Spherical model parameters of Sorensen variograms are range, separately, are bounded on [0,1] by definition. Study sites are 
nugget, sill, proportion of spatial dependence explained listed from northeast to southwest 

Site Mantel correlation Range (m) Nugget (C,) Silla (C) Spatial dependence % Extent (ha) 

South Deep 0.19 2,480 .7 1 .I7 19 1,932 
Quartzite 0.29 3,856 .67 .2 1 24 4,67 1 
Frosty Creek 0.35 5,674 .73 .I3 15 10,114 
Twenty Mile 0.51 5,519 .5 1 .33 37 9,569 
Entiat 0.34 4,178 .65 .14 18 5,484 
Swauk Creek 0.54 3,080 .60 .26 30 2,980 
Nile Creek 0.50 3,104 .62 .23 27 3,027 

" Here the sill is the difference between the nugget (Sorensen's distance at lag = 0) and the maximum Sorensen's distance for any lag 
distance, observed at the range. In the ecological literature "sill" is sometimes equated with this maximum 

synchrony explained by the variograms ranged from 
15% in Frosty Creek to 37% in Twenty Mile 
(Table 3). The range parameter from the spherical 
models indicated that fire was synchronous over fairly 
long distances, from approximately 2.5 km in South 
Deep to 5.7 km in Frosty Creek (Table 3). From these 
ranges we infer the extent (ha) of fire synchrony for 
the study sites, which we refer to as "effective fire 
size", or range of influence of the average fire. 
conditional on the nugget and sill parameters 

(Table 3). Because the sill in no cases reaches 1.0 
(complete disagreement in fire synchrony among pairs 
of trees), at least one fire scarred two of the most 
widely separated trees in every site. 

The regression relationship between fractal dimen- 
sion and Sorensen variogram range was significant 
(P < 0.01, R~ = 0.91), but only after a very signif- 
icant outlier (South Deep) was removed (Fig. 3). We 
considered outlier removal valid because South Deep 
is anomalous in many ways, including having by far 

rn 

X 

0 lM)0200030004o005000 0 1 0 0 0 ~ 3 0 0 0 4 0 0 0 5 0 0 0  0 10002000300040005000 0 10002000300040005000 
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Swauk Creek 
P 1-1 

0 lMX)200030004MX)S000 
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a-1: , . . . . I  
0 10002000300040005000 
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Nile Creek 

m 

Distance (m) 

Fig. 2 Empirical Sorensen variograms (points) and theoretical NE to SW. The spherical model becomes flat at the range 
variograms, using the spherical model (lines), as a function of (Table 3, Equation 5). "SD" on the Y axes indicates 
distance (m) at the 7 sites, presented in row-major order from Sorensen's distance 
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Table 4 Total sample size, lag (meters), and maximum are followed by the minimum, maximum, and mean distances 
distance (meters) used for constructing Sorensen variograms. (meters) between observations by site. Study sites are listed 
The minimum, maximum, and mean number of pairs used for from northeast to southwest 
the mean Sorenson's Dissimilarity Index at each lag distance 

Site n (m) No. of pairs Distance (m) between pairs 

Lag Max (d) Min Max Mean Min Max Mean 

South Deep 680 50 9,000 29 11 1 65 16 17,100 6,300 
Quartzite 142 50 5,000 7 14 40 30 13,950 5,215 

Frosty Creek 420 50 9,000 13 566 426 17 18,500 5,850 
Twenty Mile 409 200 5,000 153 929 668 11 10,445 3,307 
Entiat 490 50 9,000 83 764 564 1 I 17,650 6,080 

Swauk Creek 665 50 9,000 172 1,352 974 15 17,955 5,760 
Nile Creek 234 200 5,000 9 315 213 4 10,900 3,490 

the fewest fire scars (which are widely separated), 
the weakest variogram model (suggesting large uncer- 
tainty in the range estimate), the weakest Mantel 
correlation, and a qualitatively different fire regime 
(see Discussion). An outlier in such a small sample (7) 
does of course call into question the robustness of the 
model for extrapolation to other regions. Nevertheless, 
we see a strong negative relationship between fractal 
dimension and Sorensen variogram range (Fig. 3). 

Discussion 

This study demonstrates the importance of understand- 
ing spatial pattern and spatial autocorrelation, at 
multiple scales, in low-severity fire regimes. It further 
shows that spatially explicit intensive sampling of fire- 
scarred trees is necessary to enable such understanding. 
Our analyses highlight the importance of topography 
as a fine-scale control on historical surface fires. 

We compared seven sites with varying complexity 
of topography by quantifying the spatial autocorre- 
lation structure of fire synchrony-how common fire 
years between recorder trees are associated with the 
trees' proximity in space-within each. We used two 
statistical methods, the Mantel's test and Sorensen 
variograrn models, analogous to correlation and 
regression approaches, respectively, but explicitly 
incorporating spatial autocorrelation. 

Combining the numerical results for spatial struc- 
tures in fire synchrony (Table 4) with the fractal 
characteristics of surface topography (Table 2), we 
infer three distinct patterns of spatial dependence 
across our seven sites. 

1. Strong spatial dependence, reflected in Mantel's 
test statistics, percentage of spatial dependence 
explained and shorter ranges in variograms, and 
higher fractal dimensions (Swauk Creek, Quartz- 
ite, and Nile Creek). 

2. Equivocal spatial dependence, strong globally 
(Mantel's test) but unclear in multi-scale analy- 
sis, with longer variograrn ranges, varying 
percentage of spatial dependence, and lower 
fractal dimensions (Twenty Mile, Frosty Creek, 
Entiat). 

3. Weak spatial dependence associated with lower 
fractal dimensions (South Deep), albeit with an 
anomalously short variogram range. 

- - . - 

8Ph, *~ro&y Creek p 

Fractal Dimension 

Fig. 3 Relationship between ranges from Sorensen variogmn 
models and topographic complexity measured by fractal 
dimension. The South Deep was removed as a significant 
outlier from the model, and would have appeared below the 
lower left of the graph. Fractal dimension is a unitless measure 
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The farthest northeast site, South Deep, showed 
weak spatial dependence in fire occurrence. The short 
range in fire synchrony was disproportionate to the 
fractal characteristics of the site. This suggests little 
within-site control on the fire regime. In each 
instance, South Deep was an anomaly in the study; 
not only a statistical outlier in the regression, but also 
physically and ecologically different from the other 
sites. Topography in the Okanogan Highlands is 
gently rolling, with broad U-shaped valleys, and the 
climate is cooler and wetter than in the other sites, 
with a greater proportion of rain falling in summer 
than along the Cascade crest (Daly et al. 1994). South 
Deep also lies in the Northern Rocky Mountain eco- 
province and is more aligned with the Selkirk 
Mountains than the Cascade Range (Bailey 1996). 
On average, fires in South Deep are larger and less 
frequent than the other sites (Hessl et al. 2004). In 
contrast, the topographically complex Quartzite 
showed strong multi-scale dependence in fire syn- 
chrony with a relatively short range (3856 m). 

At the southernmost sites, Nile Creek and Swauk 
Creek, historical fire regimes showed moderate to 
strong spatial dependence in fire occurrence (Table 4) 
with high fractal dimension (Table 2), suggesting that 
their spatial variability was controlled by topography. 
Landscapes in both Nile and Swauk Creek have 
complex topography that is deeply incised with steep 
V-shaped valleys. The spatial patterns of recorder 
trees at both sites are relatively dispersed across 
topographic barriers, further contributing to precision 
in estimates of spatial dependence. For example, 
dispersed recorder trees provide less biased surro- 
gates for fire size than clustered trees because the 
greatest interpolation errors are associated with large 
gaps between points of reference, i.e., recorder trees 
(Hessl et al. 3007). 

At the middle latitude sites, Entiat, Frosty Creek 
and Twenty Mile, global dependence in fire syn- 
chrony is moderate, but the relatively long variogram 
ranges (4178-5674 m) in conjunction with the fractal 
characteristics of the sites (Table 2), suggest that 
topography has less control of the spatial variability 
of fire occurrence. Recorder trees are slightly more 
clustered within topographic structures in these sites 
when compared to Swauk Creek and Nile Creek, 
increasing uncertainty in the statistics. 

The relative strength of global and multi-scale 
spatial dependence in fire synchrony within the sites 

provides a framework for inferring which controls 
(top-down or bottom-up) are influencing fire regime 
variability (Lertzman and Fall 1998). We distinguish 
here between the amount. of fire synchrony per se, 
reflecting a global interannual effect (Hessl et al. 
2004, Kitzberger et al. 2006, Heyerdahl et al. in 
press), and the spatial dependence of fire synchrony. 
The former reflects topdown controls, whereas the 
latter reflects bottom-up control. Spatial dependence 
of fire synchrony reflects topographic controls in that 
( 1 )  global relationships (Mantel statistic) suggest on- 
the-ground impediments to fire spread, causing 
decline in synchrony over space, and (2) the range 
of synchrony will decline more rapidly (Sorensen 
variograms) if fire sizes are small and constrained by 
topographic barriers. 

When strong spatial dependence in fire synchrony 
coincides with relatively high fractal dimensions and 
relatively short variogram ranges, we therefore infer 
that the primary control on the fire regime is exerted 
from the bottom up, i.e., likely controlled by within- 
site variability in topography or possibly spatial 
heterogeneity in fuels (McKenzie et al. 2006a). Con- 
versely, when weak spatial dependence in fire 
occurrence coincides with low fractal dimensions 
and longer ranges, we infer the controls originate 
from top-down influences such as annual to decadal 
climatic variability. For example, imagine climati- 
cally controlled "big fire" years, in which ignitions 
are randomly located in space. There will be 
synchronous fires, but no relationship to geographic 
distance. 

Working with the same data, McKenzie et al. 
(2006s) found stronger fine-scale controls on fire 
occurrence in the more topographically complex sites, 
and inferred that spatial heterogeneity in fuels (from 
past fires or other disturbances, e.g., grazing), possibly 
accentuated by topographic barriers, was the likely 
cause. Hessl et al. (2004) analyzed fire-climate asso- 
ciations on the same sites and found no significant 
differences among topographically complex versus 
simple sites in the strength of climatic controls. 
Further analysis is certainly needed, therefore, to 
establish quantitatively the relative strength of top- 
down and bottom-up controls. We emphasize that 
these inferences are preliminary and await further 
analysis and interpretation (see Future Research). 

We hypothesize that two sets of processes control 
the spatial structure of fire synchrony within sites: (1) 
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topography directly controls fire sizes by creating 
barriers to fire spread, and (2) a complex set of 
processes generates spatial patterns of recorder trees, 
including local environmental controls on flamma- 
bility and fuel continuity and the stochastic process of 
seedling establishment and survival, which in turn 
depends on microscale patterns of substrates (Swezy 
and Agee 1 99 1 ; Brown and Smith 2000). We cannot 
assess here the relative importance of the two or the 
direct effect of spatial patterns on the strength of 
modeled spatial structures; this analysis would 
require replication of the process of recorder-tree 
establishment, perhaps with neutral fire-history sim- 
ulations (sensu McKenzie et al. 2006a). 

Limitations to the analysis 

Clearly we have not explained all the sources of 
variation in spatial structures of fire occurrence. 
Maximum correlation for Mantel tests is 0.54 (Swauk 
Creek), and maximum percentage variance explained 
in the variogram models is 0.37. There is a general 
pattern of sites with more complex topography 
having shorter variogram ranges, higher fractal 
dimensions, and stronger spatial structure, but no 
perfect association among these three criteria. 

One major confounding factor may be Native 
American burning, clearly an ignition source prior to 
the major population and cultural changes of the early 
1900's. Archeological evidence indicates that Native 
Americans first settled the inland Pacific Northwest 

. approximately 13,000 years ago (Robbins 1999). 
Documentary and anecdotal evidence describes the 
Entiat, Methow, and Spokane people burning low 
elevation ponderosa pine forest and grasslands in the 
region (Robbins and Wolf 1994, Robbins 1999). 
Other native groups, such as the Okanogan, Colville, 
Yakima, and Salishan, may have also set fires, 
although evidence is lacking. 

Natives may have set fires to remove undergrowth, 
stimulate new growth of species important for game, 
reduce the likelihood of more destructive fires, or 
enhance growth of food-producing species (Barrett 
19880). These fires would have been smaller on 
average than wildfires, being partially controlled, and 
possibly repeated at regular intervals over the same 
terrain, as opposed to wildfires, which were less 
likely to occur in quick succession in the same 
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locations (McKenzie et al. 206a). The possible 
effects of this burning, presumably not controlled as 
directly by topography as wildfire, are not entirely 
clear, but we would expect variograms to be affected 
in that nuggets would be lower (more similarity at 
small scales) but ranges might be longer (no big fires 
to limit variance at large scales). One net effect 
(observed above) would be to decouple variogram 
ranges from percentage variance explained (sill/ 
sill + nugget) and topographic complexity (e.g., 
fractal dimension). 

Fractal dimension, like the Mantel statistic, is a 
global metric of scale dependence, but does not 
capture spatial patterns of topographic variability 
within sites, which are implicitly reflected in our 
Mantel correlations and Sorensen variograms. A 
multi-scale analysis similar to variogram modeling 
would likely reveal more subtleties in topographic 
complexity, whose effect on this analysis, particularly 
the regression of Sorensen variogram range on a 
topographic metric, is presently unclear.' 

Future research 

Fire regimes are complex systems that represent an 
aggregate of spatial and temporal properties. Statis- 
tically considering fire regimes in their aggregate 
form may elucidate more meaningful results than the 
reconstruction of properties surrounding a single fire 
event. Very recent fire history research (Moritz et al. 
2005; McKenzie et al. 2006~1; Falk et al. 2007) has 
focused on the aggregate properties of fire regimes 
across scales. Falk et al. (7,007) suggest that cross- 
scale analyses of fire-scar records can bring us closer 
to unifying principles surrounding landscape fires by 
considering the central role of fire-size distributions 
in understanding multi-scale properties of fire 
regimes. Jordan et al. (2005) approached fire sizes 
from a different but complementary perspective, 
demonstrating that the uncertainty associated with 
individual fire sizes can be quantified using a fuzzy- 
set approach, which eliminates much of the subjec- 
tivity of estimating fire perimeters from fire-scar data. 

High resolution graphics of topographic complexity for the 
seven sites are available from the corresponding author. These 
provide a point of departure, albeit qualitative, for such a multi- 
scale analysis. 
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McKenzie et al. (2W6b) began to explore the 
estimation of fire-size distributions-as opposed to 
individual fire events-from geostatistical methods 
similar to those we use in this paper. Quantifying 
historical fire sizes would be a major step toward 
direct comparisons between the historical and modem 
record. We therefore suggest the following specific 
topics to pursue in future work: 

Examine other variogram models for fire syn- 
chrony using Sorensen's distance as the distance 
measure. Particularly useful might be models that 
can be mathematically linked to power-law 
relationships that (1) are present in fire-size 
distributions (Malamud et al. 1998, Moritz et al. 
2005), and (2) characterize the self-similar 
geomorphology of landscapes with complex 
topography. A method to link fire size distributions 
mathematically to topographic controls would be a 
major breakthrough (McKenzie et al. 2OOfih). 
Deconstruct fire synchrony over direction so that 
it can be related to anisotropy in topographic 
variance. Just as representing fire perimeters as 
circles is unrealistic, so too is invoking omnidi- 
rectional topographic controls on fire size. 
Compare fire synchrony among pairs of compos- 
ite fire records (CFRs) at different scales 
(McKenzie et al. 2006a) or within groups of trees 
which record a similar fire occurrence time series. 
Because most existing fire-history data comprise 
CFRs at single sites instead of individual recorder 
trees, analysis at the CFR scale might be extrap- 
olated with more confidence to sites without 
spatially explicit data. 
Compare models of fire synchrony in topograph- 
ically controlled sites with neutral fire history 
models (McKenzie et al. 206a). Similarly, com- 
pare fire size distributions from (1) geostatistical 
models of fire synchrony (McKenzie et al. 2006b), 
(2) probabilistic analysis of the cumulative distri- 
bution of individual fires (Jordan et al. 2005), and 
(3) standard interpolation methods such as Kriging 
or inverse distance weighting (Hessl et al. 2007). 
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suppression and towards use of fire to achieve 
ecosystem restoration, management prescriptions 
can take advantage of spatially explicit fire data and 
analysis. For example, the current template for many 
decisions relies on estimates of historical fire fre- 
quency from composite fire records, ignoring how fire 
frequency appears different at different scales and is 
associated with different drivers (McKenzie et al. 
2CKha; Falk et al. 2007). Coarse-scale analyses have 
identified areas with large departures from the histor- 
ical range of variability in fire frequency as the highest 
priorities for treatment (e.g. fire regime condition 
class 3 mCC31, Schmidt et al. 2002, Hann and 
Strohm 3003). However, these landscape classifica- 
tions lack information regarding spatial controls on 
fire occurrence at the finer scales relevant for man- 
agement, mainly because spatially explicit analyses 
like ours were not available, not necessarily because 
the FRCC process is incapable of incorporating them. 
According to our analysis, fire regimes are scale 
dependent and variable within a single ecosystem type 
(ponderosa pine) in eastern Washington, suggesting 
that an alternative approach to classifying and prior- 
itizing treatment areas is needed. This alternative also 
must go beyond simply mapping fire regimes to forest 
types or potential vegetation, which ignores the issue 
of spatial dependence in fire occurrence. 

A better understanding of the spatial structures in 
fire regimes may inform decisions about whether to use 
prescribed fire or Wildland Fire Use (WFU)--allowing 
wildfires to burn to realize management benefits. The 
largest historical fire sizes in this area suggested by ow 
analysis were probably at most ca. 5,000-10,000 ha, 
suggesting that WFU may be the most appropriate 
option for restoring historical fire regimes (if indeed 
this is possible at all in a rapidly warming world- 
McKenzie et al. 204).  Individual fire-size reconstruc- 
tions from the Pacific Northwest indicate that although 
large fires did occur in the past, they were typically not 
comparable in size to the large fires that have occurred 
in the past few decades. For example, in the Entiat 
River drainage, exceptionally large wildfires burned in 
1970 (24,685 ha), and again in 1994 (38,445 ha) (Agee 
1 994). The even larger Tripod Fire of 2006 burned over 
80,000 ha in the Okanogan Highlands; much of it was 

Implications for management very high-severity fire. These complexes of wildfires 
that burned tens of thousands of hectares clearly 

As the land management paradigm in arid mountain overcame any topographic constraints such as those we 
forests of western North America shifts away from fire have suggested for historical fires. 
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By identifying spatial structure in fire regimes at 
multiple scales, we can match the fire regime to the 
inherent scales of the controlling factors (i.e. topog- 
raphy, fuels, climate) with greater precision, thereby 
enhancing our ability to evaluate their co-varying 
relationship and assess how the current regime is 
deviating from its historic pattern. For example, 
Taylor and Skinner (2003) found that spatial and 
temporal variations for fire regimes in the Klamath 
Mountains prior to effective fire suppression (ca. 
1,940) were consistent with the tactical approach by 
land managers to use topographic features as fire 
boundaries when setting prescribed fires in highly 
complex terrain. 

Scaling relations of fire regimes may also be useful 
for prioritizing restoration efforts. If current fire size 
exceeds the boundaries of topographic units, we may 
infer that a control is no longer in effect. These 
locations become likely candidates for treatments that 
at least partially restore historic controls; for exam- 
ple, reducing fuel connectivity such that topographic 
units once more function as fire boundaries (Agee and 
Skinner 2005). 

Conclusions 

This study takes advantage of a unique fire-history 
database to apply geostatistical techniques in a way 
that is new to fire history, though well established in 
other branches of ecological research. Geospatial 
analyses revealed spatial autocorrelation structure at 
multiple scales, suggesting varying strengths of 
topographic controls on fire occurrence and fire size 
while revealing considerable unexplained variation 
that is likely due to other historical controls such as 
Native-American burning and the intrinsic variability 
of other drivers such as climate, ignitions, and 
patterns of vegetation. Our results suggest possibil- 
ities for future research when more spatially explicit 
data become available, and a preliminary understand- 
ing of how spatially explicit analyses might be 
incorporated into landscape management. 
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